Advertisement

Theoretical and Applied Genetics

, Volume 107, Issue 6, pp 1132–1138 | Cite as

Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests

  • B. FadyEmail author
  • F. Lefèvre
  • M. Reynaud
  • G. G. Vendramin
  • M. Bou Dagher-Kharrat
  • M. Anzidei
  • R. Pastorelli
  • A. Savouré
  • M. Bariteau
Article

Abstract

Hybridization and introgression are important natural evolutionary processes that can be successfully investigated using molecular markers and open- and controlled-pollinated progeny. In this study, we collected open-pollinated seeds from Cedrus atlantica, Cedrus libani and C. libani × C. atlantica hybrids from three French-plantation forests. We also used pollen from C. libani and Cedrus brevifolia to pollinate C. atlantica trees. The progeny were analyzed using three different types of molecular markers: RAPDs, AFLPs and cpSSRs. Chloroplast DNA was found to be paternally inherited in Cedrus from the progeny of controlled-crosses. Heteroplasmy, although possible, could not be undoubtedly detected. There was no indication of strong reproductive isolating barriers among the three Mediterranean Cedrus taxa. Gene flow between C. atlantica and C. libani accounted for 67 to 81% of viable open-pollinated seedlings in two plantation forests. We propose that Mediterranean Cedrus taxa should be considered as units of a single collective species comprising two regional groups, North Africa and the Middle East. We recommend the use of cpSSRs for monitoring gene flow between taxa in plantation forests, especially in areas where garden specimens of one species are planted in the vicinity of selected seed-stands and gene-conservation reserves of another species.

Keywords

Pollination Hybridization RAPD AFLP Microsatellite Taxonomy Genetic resource Cedrus 

Notes

Acknowledgements

Many thanks to B. Jouaud (INRA Avignon) for laboratory assistance, to J. Thévenet, G. Bettachini and W. Brunetto (INRA Bormes) for performing controlled-pollinations and harvesting plant material, and to S. Sabatier and Y. Caraglio (INRA/CIRAD Montpellier) for their expertise in identifying C. libani architectural types in Luberon and Lambert forests. This work was part of the project FAIR CT95-0097 "Adaptation and selection of Mediterranean Pinus and Cedrus for sustainable afforestation of marginal lands" financed by the Commission of the European Communities. All experiments comply with the current laws of the countries they were performed in.

References

  1. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York, USAGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York, USAGoogle Scholar
  3. Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908Google Scholar
  4. Barthelemy D, Caraglio Y, Sabatier S (2000) Architecture analysis: a tool for tree life history knowledge. In: Panetsos K (ed) Adaptation and selection of Mediterranean Pinus and Cedrus for sustainable afforestation of marginal lands. Giahoudi-Giapouli, Thessaloniki, Greece, pp 27–44Google Scholar
  5. Belahbib N, Pemonge M-H, Ouassou A, Sbay H, Kremer A, Petit RJ (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Mol Ecol 10:2003–2012CrossRefPubMedGoogle Scholar
  6. Bobola MS, Eckert RT, Klein AS, Stapelfeldt K, Smith DE, Guenette D (1996) Using nuclear and organelle DNA markers to discriminate among Picea rubens, Picea mariana and their hybrids. Can J For Res 26:433–443Google Scholar
  7. Bou Dagher-Kharrat M (2001) Caractérisation du génome et structuration géographique de la diversité génétique du genre Cedrus. PhD thesis, University of Paris 6, FranceGoogle Scholar
  8. Bou Dagher-Kharrat M, Grenier G, Bariteau M, Brown S, Siljak-Yakolev S, Savouré A (2001) Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theor Appl Genet 103:846–854CrossRefGoogle Scholar
  9. Debazac EF (1964) Manuel des Conifères, ENGREF, Paris, FranceGoogle Scholar
  10. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Dumolin-Lapègue S, Kremer A, Petit RJ (1999) Are chloroplast and mitochondrial DNA variations species independent in oaks? Evolution 53:1406–14,133Google Scholar
  12. Fabre JP, Bariteau M, Chalon A, Thévenet J (2001) Possibilités de multiplication du puceron Cedrobium laportei Remaudière, (Homoptera, Lachnidae) sur différentes provenances du genre Cedrus et sur deux hybrides d'espèces, perspectives d'utilisation en France. International Meeting on Sylviculture of cork oak (Quercus suber L.) and Atlas cedar (Cedrus atlantica Manetti), Rabat, Morocco, 22–25 October 2001 pp 83–94Google Scholar
  13. Fady B, Bariteau M, Fallour D, Giroud E, Lefevre F (2000) Isozyme gene markers and taxonomy of Mediterranean Cedrus species. In: Panetsos K (ed) Adaptation and selection of Mediterranean Pinus and Cedrus for sustainable afforestation of marginal lands. Giahoudi-Giapouli, Thessaloniki, Greece, pp 21–26Google Scholar
  14. Fady B, Bou Dagher-Kharrat M, Lefèvre F, Vendramin GG (2002) Combining different genotyping techniques to investigate taxonomic relationships in trees. An example in Cedrus species. Plant and Animal Genome (PAG-X) meeting, San Diego (USA), 12–16 January 2002, poster no. 168Google Scholar
  15. Fallour D, Fady B, Lefèvre F (2001) Evidence of variation in segregation patterns within a Cedrus population. J Hered 92:260–266CrossRefPubMedGoogle Scholar
  16. Gaussen H (1964) Les gymnospermes actuelles et fossiles, genre Cedrus. Trav Lab Forest Toulouse 2:295–320Google Scholar
  17. Greuter W, Burdet HM, Long G (1984) Med-checklist 1. Conservatoire et Jardin Botanique de la ville de Genève, Genève, SwitzerlandGoogle Scholar
  18. Kormutak A (1985) Study on species hybridization within the genus Abies. (Acta dendrobiologica) Veda, Bratislava, SlovakiaGoogle Scholar
  19. Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121Google Scholar
  20. Mac Pherson JM, Eckstein PE, Scoles GJ, Gajadhar AA (1993) Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. Mol Cell Probe 7:293–299CrossRefPubMedGoogle Scholar
  21. Scaltsoyiannes A (1999) Allozyme differentiation and phylogeny of cedar species. Silvae Genet 48:61–68Google Scholar
  22. Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (1964) Flora Europaea, Vol.1. Cambridge University PressGoogle Scholar
  23. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:111–114Google Scholar
  24. Vidakovic M (1991) Conifers: morphology and variation. Graficki Zavod-Hrvatske, Boro Brekalo, YugoslaviaGoogle Scholar
  25. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Mornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  26. Wagner DB (1992) Nuclear, chloroplast and mitochondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New For 6:373–390Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • B. Fady
    • 1
    Email author
  • F. Lefèvre
    • 1
  • M. Reynaud
    • 1
  • G. G. Vendramin
    • 2
  • M. Bou Dagher-Kharrat
    • 3
    • 4
  • M. Anzidei
    • 2
  • R. Pastorelli
    • 2
  • A. Savouré
    • 3
  • M. Bariteau
    • 1
  1. 1.INRA, Unité des Recherches Forestières Méditerranéennes, Avenue A. Vivaldi, 84000 Avignon, France
  2. 2.CNR – Istituto di Genetica Vegetale, Divisione di Firenze, Via Atto Vannucci 13, 50134 Firenze, Italy
  3. 3.Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre and Marie Curie, case 156, 4 place Jussieu, 75252 Paris cedex 05, France
  4. 4.Université Saint-Joseph, Faculté des Sciences, Département de Biologie, CST, Mar Roukos, Mkallès, B.P. 11-0514, Riad el Solh, Beyrouth 1107 2050, Lebanon

Personalised recommendations