Theoretical and Applied Genetics

, Volume 107, Issue 6, pp 1123–1131 | Cite as

Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers

  • A. Gómez
  • S. C. González-Martínez
  • C. Collada
  • J. Climent
  • L. GilEmail author


The Canary archipelago, located on the northwestern Atlantic coast of Africa, is comprised of seven islands aligned from east to west, plus seven minor islets. All the islands were formed by volcanic eruptions and their geological history is well documented providing a historical framework to study colonization events. The Canary Island pine (Pinus canariensis C. Sm.), nowadays restricted to the westernmost Canary Islands (Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro), is considered an old (Lower Cretaceous) relic from an ancient Mediterranean evolutionary centre. Twenty seven chloroplast haplotypes were found in Canary Island pine but only one of them was common to all populations. The distribution of haplotypic variation in P. canariensis suggested the colonization of western Canary Islands from a single continental source located close to the Mediterranean Basin. Present-day populations of Canary Island pine retain levels of genetic diversity equivalent to those found in Mediterranean continental pine species, Pinus pinaster and Pinus halepensis. A hierarchical analysis of variance (AMOVA) showed high differentiation among populations within islands (approximately 19%) but no differentiation among islands. Simple differentiation models such as isolation by distance or stepping-stone colonization from older to younger islands were rejected based on product-moment correlations between pairwise genetic distances and both geographic distances and population-age divergences. However, the distribution of cpSSR diversity within the islands of Tenerife and Gran Canaria pointed towards the importance of the role played by regional Pliocene and Quaternary volcanic activity and long-distance gene flow in shaping the population genetic structure of the Canary Island pine. Therefore, conservation strategies at the population level are strongly recommended for this species.


Colonization Gene diversity Genetic structure Pinus canariensis Oceanic islands 



Brent Emerson and Ricardo Alía's valuable contributions to discussions on the original manuscript are much appreciated. We are grateful to Esther Pérez for field work and to Leonie Woodin who revised the English language. This work was supported by the Insular Administration (Cabildo) of Tenerife and by the Viceconsejería de Medio Ambiente (Canary Islands Government). Technical support was also provided by the Cabildo of Gran Canaria. All the experiments conducted during this study comply with the current laws of Spain.


  1. Aboal JR, Jiménez MS, Morales D, Gil P (2000) Effect of thinning on throughfall in Canary Islands pine forest – the role of fog. J Hydrol 238:218–230CrossRefGoogle Scholar
  2. Ancochea E, Fúster JM, Ibarrola E, Cendrero A, Coello J, Hernán F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44:231–249Google Scholar
  3. Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321PubMedGoogle Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MAGoogle Scholar
  5. Baldwin BG, Crawford DJ, Francisco-Ortega J, Kin S-C, Sang T, Stuessy TF (1988) Molecular phylogenetic insights on the origin and evolution of oceanic island plants. In: Soltis DE, Soltis P, Doyle JJ (eds) Molecular systematics of plants. II. DNA sequencing. Kluwer Academic Publishers, New York, USA, pp 410–441Google Scholar
  6. Böhle UR, Hilger HH, Martin WF (1996) Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc Natl Acad Sci USA 93:11,740–11,745CrossRefGoogle Scholar
  7. Bramwell D (1976) The endemic flora of the Canary Islands: distribution, relationships and phytogeography. In: Kunkel G (ed) Biogeography and ecology in the Canary Islands. W. Junk, The Hague, pp 207–240Google Scholar
  8. Bramwell D (1990) Conserving biodiversity in the Canary Islands. Ann Missouri Bot Gard 77:28–37Google Scholar
  9. Brown RP, Pestano J (1998) Phylogeography of skinks (Chalcides) in the Canary Islands inferred from mitochondrial DNA sequences. Mol Ecol 7:1183–1191CrossRefPubMedGoogle Scholar
  10. Climent J, Gil L, Tuero M (1996) Regiones de procedencia de Pinus canariensis Chr. Sm. Ex DC. DGCONA-MAPA, MadridGoogle Scholar
  11. Coello J, Cantagrel JM, Hernán F, Fuster JM, Ibarrola E, Ancoechea E, Casquet C, Jamond C, Díaz de Terán JR, Cendrero A (1992) Evolution of the eastern volcanic ridge of the Canary Islands based on new K-Ar data. J Volcanol Geotherm Res 53:251–274Google Scholar
  12. Crandall KA, Templeton AR (1996) Applications of intraspecific phylogenetics. In: Harvey PH, Brown AJL, Smith JM (eds) New uses for new phylogenies. Oxford University Press, OxfordGoogle Scholar
  13. De la Rúa P, Galián J, Serrano J, Moritz RFA (2001) Genetic structure and distinctness of Apis mellifera L. populations from Canary Islands. Mol Ecol 10:1733–1742CrossRefPubMedGoogle Scholar
  14. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  15. Emerson BC (2002) Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol Ecol 11:951–966CrossRefPubMedGoogle Scholar
  16. Emerson BC, Oromí P, Hewitt GM (1999) MtDNA phylogeography and recent intra-island diversification among Canary Island Calathus beetles. Mol Phylog Evol 13:149–158CrossRefGoogle Scholar
  17. Emerson BC, Oromí P, Hewitt GM (2000) Interpreting colonization of the Calathus (Coleoptera: Carabidae) on the Canary Islands and Madeira through the application of the parametric bootstrap. Evolution 54:2081–2090PubMedGoogle Scholar
  18. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  19. Francisco-Ortega J, Jansen RK, Santos-Guerra A (1996) Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. Proc Natl Acad Sci USA 93:4085–4090CrossRefPubMedGoogle Scholar
  20. Funck T, Dickmann T, Rihm R, Krastel S, Lykke-Andersen H, Schmincke H-U (1996) Reflecting seismic investigations in the volcaniclastic apron of Gran Canaria and implications for its volcanic evolution. Geophysical J Int 125:519–536Google Scholar
  21. Gil L, Climent J, Nanos N, Mutke S, Ortiz I, Schiller G (2002) Cone morphology variation in Pinus canariensis Sm. Plant Syst Evol 235:35–51CrossRefGoogle Scholar
  22. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471PubMedGoogle Scholar
  23. Grant PR (1986) Ecology and evolution of Darwin's Finches. Princeton University Press, Princeton, New JersyGoogle Scholar
  24. Gregor HJ (1980) Funde von Pinus canariensis Ch. Smith fossilis aus dem Neogen von La Palma Kanarische Inselm. Vieraea 9:57–64Google Scholar
  25. Hamrick JL, Godt MJ, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124Google Scholar
  26. Hess J, Kadereit JW, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Mol Ecol 9:857–868CrossRefPubMedGoogle Scholar
  27. Hewitt GM (2001) Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Mol Ecol 10:537–549CrossRefPubMedGoogle Scholar
  28. Juan C, Oromí P, Hewitt GM (1995) Mitochondrial DNA phylogeny and sequential colonization of Canary islands by darkling beetles of the genus Pimelia (Tenebrionidae). Proc R Soc B 261:173–180Google Scholar
  29. Juan C, Oromí P, Hewitt GM (1996) Phylogeny of the genus Hegeter (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequences. Heredity 76:392–403PubMedGoogle Scholar
  30. Juan C, Emerson BC, Oromí P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. TREE 15:104–109CrossRefPubMedGoogle Scholar
  31. Kim S-C, Crawford DJ, Francisco-Ortega J, Santos-Guerra A (1996) A common origin for woody Sonchus and five related genera in the Macaronesian islands: molecular evidence for extensive radiation. Proc Natl Acad Sci USA 93:7743–7748CrossRefPubMedGoogle Scholar
  32. Klaus W (1989) Mediterranean pines and their history. Plant Syst Evol 162:133–163Google Scholar
  33. Korol L, Gil L, Climent J, Zehavi A, Schiller G (1999) Canary Islands pine (Pinus canariensis Chr. Sm. ex DC) 2. Gene flow among native populations. For Genet 6:277–282Google Scholar
  34. Ledig FT (1998) Genetic variation in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 251–280Google Scholar
  35. Liston A, Robinson WA, Piñero D, Álvarez-Buylla ER (1999) Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA Internal Transcribed Spacer region sequences. Mol Phylog Evol 11:95–109Google Scholar
  36. López G, Kamiya K, Harada K (2002) Phylogenetic relationships of Diploxilon pines (subgenus Pinus) based on plastid sequence data. Int J Plant Sci 163:737–747CrossRefGoogle Scholar
  37. Loveless MD (1992) Isozyme variation in tropical trees: patterns of genetic organization. New For 6:67–94Google Scholar
  38. Machado-Yanes MC (1996) Reconstrucción paleoecológica y etnoarqueológica por medio del análisis antracológico. La cueva de Villaverde (Fuerteventura). In: Ramil-Rego P, Fernández-Rodríguez C, Rodríguez-Guitián M (eds) Biogeografía Pleistocena-Holocena de la Península Ibérica. Universidad de Santiago, Spain, pp 261–274Google Scholar
  39. Mantel NA (1967) The detection of disease clustering and a generalizated regression approach. Cancer Res 27:91–99Google Scholar
  40. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  41. Nogales M, López M, Jiménez-Asensio J, Larruga JM, Hernández M, González P (1998) Evolution and biogeography of the genus Tarentola (Sauria: Gekkonidae) in the Canary Islands, inferred from mitochondrial DNA sequences. J Evol Biol 11:481–494CrossRefGoogle Scholar
  42. Pinto FM, Brehm A, Hernández M, Larruga JM, González AM, Cabrera VM (1997) Population genetic structure and colonization sequence of Drosophila subobscura in the Canaries and Madeira Atlantic islands as inferred by autosomal, sex-linked and mtDNA traits. J Hered 88:108–114PubMedGoogle Scholar
  43. Rees DJ, Emerson BC, OromíP, Hewitt GM (2001) Mitochondrial DNA, ecology and morphology: interpreting the phylogeography of the Nesotes (Coleoptera: Tenebrionidae) of Gran Canaria (Canary Islands). Mol Ecol 10:427–434CrossRefPubMedGoogle Scholar
  44. Sahuquillo E, Lumaret R (1999) Chloroplast DNA variation in Dactylis glomerata L. taxa endemic to the Macaronesian islands. Mol Ecol 8:1797–1803CrossRefPubMedGoogle Scholar
  45. Schiller G, Korol L, Ungar ED, Zehavi A, Gil L, Climent J (1999) Canary islands pine (Pinus canariensis Chr. Sm. ex DC) 1. Differentiation among native populations in their isoenzymes. For Genet 6:257–276Google Scholar
  46. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2000: a software for population genetic data analysis. Genetic and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  47. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  48. Thorpe RS, McGregor DP, Cumming AM, Jordan WC (1994) DNA evolution and colonization sequence of island lizards in relation to geological history: mtDNA, RFLP, cytochrome B, cytochrome oxidase, 12S rRNA and nuclear RAPD analysis. Evolution 48:230–240Google Scholar
  49. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598PubMedGoogle Scholar
  50. Wang XR, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl 20-rps18 spacer, and trnV intron sequences. Am J Bot 86:1742–1753PubMedGoogle Scholar
  51. Zheng Y-Q, Ennos RA (1999) Genetic variability and structure of natural and domesticated populations of Caribbean pine (Pinus caribaea Morelet). Theor Appl Genet 98:765–771CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Gómez
    • 1
    • 4
  • S. C. González-Martínez
    • 1
  • C. Collada
    • 3
  • J. Climent
    • 2
  • L. Gil
    • 2
    Email author
  1. 1.Unidad de Genética Forestal, CIFOR-INIA, P. O. Box 8111, 28080 Madrid, Spain
  2. 2.Unidad de Anatomía, Fisiología y Genética, ETSIM, Ciudad Universitaria s/n, 28040 Madrid, Spain
  3. 3.Unidad de Química General y Bioquímica, ETSIM, Ciudad Universitaria s/n, 28040 Madrid, Spain
  4. 4.Instituto Madrileño de Investigación Agraria. Finca El Encin, Alcalá de Henares, Madrid, Spain

Personalised recommendations