Theoretical and Applied Genetics

, Volume 107, Issue 6, pp 1102–1112 | Cite as

Efficient multipoint mapping: making use of dominant repulsion-phase markers

  • D. I. Mester
  • Y. I. Ronin
  • Y. Hu
  • J. Peng
  • E. Nevo
  • A. B. Korol
Article

Abstract

The paper is devoted to the problem of multipoint gene ordering with a particular focus on "dominance" complication that acts differently in conditions of coupling-phase and repulsion-phase markers. To solve the problem we split the dataset into two complementary subsets each containing shared codominant markers and dominant markers in the coupling-phase only. Multilocus ordering in the proposed algorithm is based on pairwise recombination frequencies and using the well-known travelling salesman problem (TSP) formalization. To obtain accurate results, we developed a multiphase algorithm that includes synchronized-marker ordering of two subsets assisted by re-sampling-based map verification, combining the resulting maps into an integrated map followed by verification of the integrated map. A new synchronized Evolution-Strategy discrete optimization algorithm was developed here for the proposed multilocus ordering approach in which common codominant markers facilitate stabilization of the marker order of the two complementary maps. High performance of the employed algorithm allows systematic treatment for the problem of verification of the obtained multilocus orders, based on computing-intensive bootstrap and jackknife technologies for detection and removing unreliable marker scores. The efficiency of the proposed algorithm was demonstrated on simulated and real data.

Keywords

Multilocus ordering Synchronized optimization algorithm Dominant marker Repulsion phase Bootstrap 

References

  1. Bailey NTJ (1961) Introduction to mathematical theory of genetic linkage. Calendon Press, OxfordGoogle Scholar
  2. Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res 12:26–36PubMedGoogle Scholar
  3. Boyko E, Kalendar R, Korzun V, Fellers J, Korol AB, Schulman AH, Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790PubMedGoogle Scholar
  4. Buetow KN, Chakravarti A (1987) Multipoint gene mapping using seriation. Am J Hum Genet 41:189–201PubMedGoogle Scholar
  5. Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize: on the road to an integrated map. Plant Physiol 130:1598-1605CrossRefPubMedGoogle Scholar
  6. Curtis D, Gurling H (1993) A procedure for combining two-point lod scores into a summary multipoint map. Hum Hered 43:173–185PubMedGoogle Scholar
  7. Efron B (1979) Bootstrap method: another look at the jackknife. Ann Stat 7:1–26Google Scholar
  8. Ellis T (1997) Neighbour mapping as a method for ordering genetic markers. Genet Res 69:35–43CrossRefGoogle Scholar
  9. Esch E, Weber WE (2002) Investigation of crossover interference in barley (Hordeum vulgare L.) using the coefficient of coincidence. Theor Appl Genet 104:786–796CrossRefGoogle Scholar
  10. Falk CT (1992) Preliminary ordering of multiple linked loci using pairwise linkage data. Genet Epidemiology 9:367–375PubMedGoogle Scholar
  11. Fogel D (1992) Evolving artificial intelligence. PhD thesis, University of California, San-DiegoGoogle Scholar
  12. Hall D, Bhandarkar SH, Wang J (2001) ODS2: a multiplatform software application for creating integrated physical and genetic maps. Genetics 157:1045–1056Google Scholar
  13. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2,275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  14. Holland J (1975) Adaptation in natural and artificial systems. MIT PRESS, Cambridge, USAGoogle Scholar
  15. Homberger J, Gehring H (1999) Two evolutionary metaheuristics for a vehicle routing problem with time windows. INFOR 37:297–318Google Scholar
  16. Jansen J, de Jong AC, van Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122Google Scholar
  17. Kirkpatrick S, Gellatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680Google Scholar
  18. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807CrossRefPubMedGoogle Scholar
  19. Knapp SJ, Holloway JL, Bridges WC, Liu BH (1995) Mapping dominant markers using F2 mating. Theor Appl Genet 91:74–81Google Scholar
  20. Lathrop GM, Llouel JM (1984) Easy calculation of lod scores and genetic risks on small computers. Am J Hum Genet 36:469–465Google Scholar
  21. Lathrop GM, Llouel JM, Julier C, Ott J (1985) Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet 37:482–498PubMedGoogle Scholar
  22. Lander ES, Green P (1987) Construction of multilocus linkage maps in human. Proc Natl Acad Sci USA 84:2363–2367PubMedGoogle Scholar
  23. Lin S, Kernighan B (1973) An effective heuristic algorithm for the TSP. Operation Res 21:498–516Google Scholar
  24. Liu BH (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, New YorkGoogle Scholar
  25. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2,926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499CrossRefPubMedGoogle Scholar
  26. Mester D (1999) The parallel algorithm for vehicle routing problem with time window restrictions. Scientific report, Minerva Optimization Center, Technion, Haifa, IsraelGoogle Scholar
  27. Mester D (2003) Evolutionary strategies algorithm for a large-scale vehicle routing problem with capacitate and time-windows restrictions. J Heuristics (revised)Google Scholar
  28. Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Constructing large scale genetic maps using evolutionary strategy algorithm. Genetics (revised)Google Scholar
  29. Muhlenbein H, Gorges-Scheuter MO, Kramer O (1998) Evolution algorithm in combinatorial optimization. Parallel Computing 7:65–85CrossRefGoogle Scholar
  30. Newell RW, Mott R, Beck S, Lehrach H (1995) Construction of genetic maps using distance geometry. Genomics 30:59–70CrossRefPubMedGoogle Scholar
  31. Nissen V (1994) Evolutionare algorithmen. Deutscher Universitats-Verlag, WiesbadenGoogle Scholar
  32. Olson JM, Boehnke M (1990) Monte Carlo comparison of preliminary methods of ordering multiple genetic loci. Am J Hum Genet 47:470–482PubMedGoogle Scholar
  33. Or I (1976) Traveling salesman – type combinatorial problems and their relations to the logistics of regional blood banking. PhD thesis, Dept Industrial Engendering and Management Science, Northwestern UniversityGoogle Scholar
  34. Osman I (1993) Metastrategy simulated annealing and Tabu Search algorithm for VRP. Ann Operation Res 41:421–451Google Scholar
  35. Parsons YM, Shaw KL (2002) Mapping unexplored genomes. A genetic linkage map of the Hawaiian cricket laupala. Genetics 162:1275–1282Google Scholar
  36. Peng J, Korol A, Fahima T, Roder M, Ronin Y, Li Y, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531PubMedGoogle Scholar
  37. Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication QTLs in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494Google Scholar
  38. Pérez-Enciso M, Roussot O (2002) A method for computing identity by descent probabilities and quantitative trait loci mapping with dominant (AFLP) markers. Genetical Res 79:247–258Google Scholar
  39. Press WT, Hannery BP, Teucolsky SA, Veterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, LondonGoogle Scholar
  40. Rechenberg I (1973) Evolutionstrategie. Fromman-Holzboog, StutgartGoogle Scholar
  41. Sall T, Nilsson NO (1994) The robustness of recombination frequency estimates in intercrosses with dominant markers. Genetics 137:589–596PubMedGoogle Scholar
  42. Schwefel H-P (1977) Numeriche Optimierung von Computer-Modelen Mittels der Evolutions-strategie. Birkauser, BaselGoogle Scholar
  43. Schwefel H-P (1987) Collective phenomena in evolutionary systems. Interne Berichte und Skripten, Fachbereich Informatic, University DortmundGoogle Scholar
  44. Schinex T, Gaspin C (1997) Carthagene: constructing and joining maximum-likelihood genetic maps. ISMB 5:258–267PubMedGoogle Scholar
  45. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744Google Scholar
  46. Thompson EA (1984) Information gain in joint linkage analysis. IMA J Math Appl Med Biol 1:31–49PubMedGoogle Scholar
  47. VanOoijen JW (2002) JoinMap 3.0: advanced computer software for the calculation of genetic linkage maps in experimental populations. j.w.vanooijen@plant.wag-ur.nlGoogle Scholar
  48. Wang Y, Prade R, Griffith J, Timberlake W, Arnold J (1994) ODS_BOOTSTRAP: assessing the statistical reliability of physical maps by bootstrap re-sampling. CABIOS 10:625–634PubMedGoogle Scholar
  49. Weeks D, Lange K (1987) Preliminary ranking procedures for multilocus ordering. Genomics 1:236–242PubMedGoogle Scholar
  50. Wilson S (1988) A major simplification in the preliminary ordering of linked loci. Genet Epidemiology 5:75–80PubMedGoogle Scholar
  51. Whitaker D, Williams ER (2001) OutMap version 1.0. http://www.ffp.csiro.au/tigr/software/outmap/outmap.htmGoogle Scholar
  52. Yang YP, Womack JE (1998) Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res 8:731–736PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. I. Mester
    • 1
  • Y. I. Ronin
    • 1
  • Y. Hu
    • 1
  • J. Peng
    • 1
  • E. Nevo
    • 1
  • A. B. Korol
    • 1
  1. 1.Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 31905, Israel

Personalised recommendations