Advertisement

Theoretical and Applied Genetics

, Volume 107, Issue 4, pp 713–718 | Cite as

Distinction between cultivated and wild chicory gene pools using AFLP markers

  • P. Van Cutsem
  • P. du Jardin
  • C. Boutte
  • T. Beauwens
  • S. Jacqmin
  • X. Vekemans
Article

Abstract.

The cultivation area of industrial chicory, Cichorium intybus L. cv Sativum, coincides with the natural distribution area of its wild relative, C. intybus L., which could lead to gene flow between wild and cultivated types. The genetic diversity within and between the two types has therefore been studied using AFLP genotyping of samples from 12 wild populations collected in Belgium and ten commercial varieties. The genotyping of 233 individuals allowed the identification of 254 AFLP markers. Similar levels of genetic diversity were observed within wild populations and cultivated varieties, suggesting the absence of any strong bottleneck in the history of the cultivated types. The phylogenetic analysis pointed to a monophyletic origin of cultivated varieties as compared to the local wild populations studied, hence the two types of chicory form two separate gene pools. The genotyping of some individuals sampled in ruderal sites clearly showed that they belong to the cultivated gene pool, which suggests the existence of feral or weedy types. The low differentiation observed among wild populations indicates that gene flow might be important in this species.

Keywords.

Cichorium intybus Chicory AFLP GMO Genetic structure 

Notes

Acknowledgements.

The financial support of the Région Wallonne, Belgium, is gratefully acknowledged (Programme Wallonie-Développement-Université). Cosucra s.a. supplied seeds of commercial varieties. André Demoulin helped with the localisation of populations of wild chicory. The authors also thank the reviewers for their constructive criticism.

References

  1. Baes PG, Van Cutsem PJ (1992) Chicory seed-lot variety identification by leucine-aminopeptidase and esterase zymogram analysis. Electrophoresis 13:885–886PubMedGoogle Scholar
  2. Baes PG, Van Cutsem PJ (1993) Isozyme polymorphism in three gene pools of cultivated chicory (Cichorium intybus L.). Euphytica 71:143–150Google Scholar
  3. Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I, Ellstrand N (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea-beet populations. Mol Ecol 8:1733–1741CrossRefPubMedGoogle Scholar
  4. Bellamy A, Vedel F, Bannerot H (1996) Varietal identification in Cichorium intybus L. and determination of genetic purity of F1 hybrid seed samples, based on RAPD markers. Plant Breed 115:128–132Google Scholar
  5. Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L.; (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–1201CrossRefGoogle Scholar
  6. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, USAGoogle Scholar
  7. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetic resources. Sinauer Associates Inc, Sunderland, Massachussetts, USA, pp 43–63Google Scholar
  8. Jones CJ, Edwards KJ, Castiglione S et al. (1998) Reproducibility testing of AFLPs by a network of European laboratories. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman and Hall, London, pp 191–192Google Scholar
  9. Kiers AM, Mes T, van der Meijden R, Bachmann K (2000) A search for diagnostic AFLP markers in Cichorium species with emphasis on endive and chicory cultivar groups. Genome 43:470–476CrossRefPubMedGoogle Scholar
  10. Koch G, Jung C (1997) Phylogenic relationship of industrial chicory varieties revealed by RAPDs and AFLPs. Agronomie 17:323–333Google Scholar
  11. Krauss SL (2000) Accurate gene-diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245CrossRefPubMedGoogle Scholar
  12. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedGoogle Scholar
  13. Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA, Nucleic Acids Res 8:4321–4325Google Scholar
  14. Pejic I, Ajmone-Marsan P, Morgante M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255CrossRefGoogle Scholar
  15. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779Google Scholar
  16. Rohlf FJ (2000) NTSys: numerical taxonomy and multivariate analysis system, version 2.1. State University of New York, USAGoogle Scholar
  17. Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedGoogle Scholar
  18. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • P. Van Cutsem
    • 1
  • P. du Jardin
    • 2
  • C. Boutte
    • 1
  • T. Beauwens
    • 3
  • S. Jacqmin
    • 2
  • X. Vekemans
    • 3
    • 4
  1. 1.Facultés Universitaires de Namur, Unité de Recherche en Biologie Cellulaire Végétale, 61 rue de Bruxelles, B-5000 Namur, Belgium
  2. 2.Faculté Universitaire des Sciences Agronomiques de Gembloux, Unité de Biologie végétale, Passage des Déportés 2, B-5030 Gembloux, Belgium
  3. 3.Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie végétales, 1850 chaussée de Wavre, B-1160 Brussels, Belgium
  4. 4.Université de Lille 1, Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016 - FR CNRS 1818, Batiment SN2, F-59655 Villeneuve d'Ascq Cedex, France

Personalised recommendations