Advertisement

Theoretical and Applied Genetics

, Volume 107, Issue 4, pp 705–712 | Cite as

Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis

  • G. ChaixEmail author
  • S. Gerber
  • V. Razafimaharo
  • P. Vigneron
  • D. Verhaegen
  • S. Hamon
Article

Abstract

Eucalyptus grandis has a mixed-mating reproductive system. Malagasy Eucalyptus seed orchards were established 15 years ago with two aims both based on panmixia: open-pollinated seed production and genetic improvement. The panmixia hypothesis has never been confirmed in the seed orchard. From a seedling seed-orchard stand comprising 349 trees and using data obtained with six selected microsatellite markers, paternity analysis was performed for 724 offspring collected on 30 adult trees. Paternity assignment, based on exclusion procedures and likelihood-ratio method, was achieved with high accuracy; the exclusion probability value was 0.997. The outcrossing rate was very high (96.7%). More than 50% of potential male trees (199 out of 349) in the seed orchard contributed to pollination for 440 offspring of 30 progenies (8.6% of the basic population). The pollination rate from outside the seed orchard was high (39.2%), but might be due to the small size of this seed orchard. This study showed that "panmixia-like pollination" can be assumed.

Keywords

Eucalyptus grandis Pollen flow Seed orchard Paternity analysis Microsatellite Madagascar 

Notes

Acknowledgements

This paper represents a portion of the doctoral research of G. Chaix supported by the Scientific Directorate of Cirad (ATP Vergers à graines) and by Cirad-forêt. We wish to thank F. Rasolo, Y. Rabenantoandro, H. Randrianjafy (Fofifa), G. Rabetsoa (Fanalamanga) and A. Charrier (Ensam) for agreeing to conduct this work in Madagascar, J.C. Maillard, I. Chantal, M. Poitel and S. Razafiarivelo for their help in the laboratory, and J. Rakotonjanahary, N. Ratovoson and J. Rakotondrasoa for their field work.

References

  1. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development characterization and mapping of microsatellite markers in Eucalyptus grandis and Eucalyptus urophylla. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  2. Burgess IP, Williams ER (1996) The effect of outcrossing rate on the growth of selected families of Eucalyptus grandis. Silvae Genet 45:2–3Google Scholar
  3. Byrne M, Marquez Garcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341Google Scholar
  4. Chaix G, Ramamonjisoa L (2001) Production de semences pour les reboisements malgaches. Bois et Forêts des Tropiques 269:49–63Google Scholar
  5. Chaix G, Chantal I, Poitel M, Razafiarivelo S, Verhaegen S, Maillard JC (2002) Microsatellite primer amplification by multiplexing: a first application to Eucalyptus grandis. Plant Mol Biol Rep 20:67a–67eGoogle Scholar
  6. Chase MR, Moller C, Kessel R, Bawa K (1996) Distant gene flow in a tropical tree. Nature 383:398–399Google Scholar
  7. Davis AR (1997) Influence of floral visitation on nectar-sugar composition and nectary surface changes in Eucalyptus. Apidologie 28:27–42Google Scholar
  8. Devlin B, Ellstrand NC (1990) The development and application of a refined method for estimating gene flow from angiosperm paternity analysis. Evolution 44:248–259Google Scholar
  9. Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627Google Scholar
  10. Dow BD, Ashley MV (1998) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. Heredity 89:62–70CrossRefGoogle Scholar
  11. Gaiotto FA, Bramucci M, Grattapaglia D (1997) Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theor Appl Genet 95:5–6CrossRefGoogle Scholar
  12. Gerber S, Mariette D, Streiff R, Bodénès C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048CrossRefPubMedGoogle Scholar
  13. Griffin AR, Cotteril PP (1988) Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet 37:124–131Google Scholar
  14. Grosser C, Vaillancourt R, Potts B, O'Sullivan H (2001) Paternity analysis in a Eucalyptus nitens clonal seed orchard. In: Proceedings Developing the Eucalypts of the Future. IUFRO Int Symp 10–15 Sept 2001, Valdivia, ChileGoogle Scholar
  15. Hardner CM, Potts BM (1995) Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genet 44:46–54Google Scholar
  16. Hardner C, Tibbits W (1998) Inbreeding depression for growth, wood and fecundity traits in Eucalyptus nitens. For Genet 5:11–20Google Scholar
  17. Hardner CM, Potts BM, Gore PL (1998) The relationship between cross success and spatial proximity of Eucalyptus globulus ssp. globulus parents. Evolution 52:614–618Google Scholar
  18. Hodgson LM (1976) Some aspects of flowering and reproductive behavior in Eucalyptus grandis (Hill) Maiden at JDM Keet Forest Research Station. 2. The fruit, seed, seedlings, self fertility, selfing and inbreeding effects. South Afric For J 97:32–43Google Scholar
  19. Horskins K, Turner VB (1999) Resource use and foraging patterns of honeybees, Apis mellifera, and native insects on lowers of Eucalyptus costata. Aust J Ecol 24:221–227CrossRefGoogle Scholar
  20. Kameyama Y, Isagi Y, Naito K, Nakagoshi N (2000) Microsatellite analysis of pollen flow in Rhododendron metternichii var. hondunese. Ecol Res 15:263–269CrossRefGoogle Scholar
  21. Konuma A, Tsumura Y, Lee CT, Lee SL, Okuda T (2000) Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis. Mol Ecol 9:1843–1852CrossRefPubMedGoogle Scholar
  22. Meagher TR, Thompson E (1986) The relationship between single parent and parent-pair genetic likelihoods in genealogy reconstruction. Theor Pop Biol 29:87–106Google Scholar
  23. Moncur MW, Mitchell A, Fripp Y, Kleinschmidt GJ (1995) The role of honeybees (Apis mellifera) in eucalypt and acacia seed-production areas. Com For Rev 64:350–354Google Scholar
  24. Moran GF (1992) Patterns of genetic diversity in Australian tree species. New For 6:49–66Google Scholar
  25. Moran GF, Brown AHD (1980) Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delegatensis R.T. Bak.). Theor Appl Genet 57:101–105Google Scholar
  26. Moran GF, Bell JC, Griffin AR (1989) Reduction in levels of inbreeding in a seed orchard of Eucalyptus regnans F. Muell. compared with natural populations. Silvae Genet 38:32–36Google Scholar
  27. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  28. Pakkanen A, Nikkanen T, Pulkkinen P (2000) Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scand J For Res 15:399–404CrossRefGoogle Scholar
  29. Patterson B, Potts B, Vaillancourt R (2001) Variation in outcrossing rates within the canopy of Eucalyptus globulus. In: Proceedings Developing the Eucalypts of the Future. IUFRO Int Symp 10–15 Sep 2001, Valdivia, ChileGoogle Scholar
  30. Plomion C, LeProvost G, Pot D, Vendramin G, Gerber S, Decroocp S, Brach J, Raffin A, Pastuszka P (2001) Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites. Can J For Res 31:1816–1825CrossRefGoogle Scholar
  31. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 83:239Google Scholar
  32. Sato AS, Mori ES (1996) Detection of inbreeding in seeds of Eucalyptus grandis Hill ex Maiden. Rev Inst Flor 8:131–134Google Scholar
  33. Streiff R, Labbe T, Bacilieri R, Steinkeller H, Glössl, Kremer A (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328CrossRefGoogle Scholar
  34. Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur and Q. petraea. Mol Ecol 8:831–841CrossRefGoogle Scholar
  35. Van Wyk G (1981) Inbreeding effects in Eucalyptus grandis in relation to the degree of relatedness. South Afr For J 116:60–63Google Scholar
  36. Yeh F, Brune A, Cheliak WM, Chipman DC (1983) Mating system of Eucalyptus citriodora in a seed-production area. Can J For Res 13:1051–1055Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • G. Chaix
    • 1
    Email author
  • S. Gerber
    • 2
  • V. Razafimaharo
    • 1
  • P. Vigneron
    • 3
  • D. Verhaegen
    • 3
  • S. Hamon
    • 4
  1. 1.Cirad-Forêt/Fofifa, B.P. 745, Antananarivo 101, Madagascar
  2. 2.INRA, Laboratoire de génétique et amélioration des arbres forestiers, BP 45, F-33611 Gazinet Cedex, France
  3. 3.Cirad-Forêt, Campus de Baillarguet TA 10C, 34398 Montpellier Cedex 5 France
  4. 4.IRD Montpellier, 911 Avenue Agropolis, 34032 Montpellier Cedex France

Personalised recommendations