Advertisement

Theoretical and Applied Genetics

, Volume 107, Issue 2, pp 271–282 | Cite as

Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers

  • M. Ferriol
  • B. Picó
  • F. NuezEmail author
Article

Abstract

Cucurbita pepo is a highly polymorphic species. The cultivars can be grouped into eight morphotypes in two subspecies, ssp. pepo and ssp. ovifera. A collection of 69 accessions representative of the morphotypes and some unclassified types was used for analysing the morphological and molecular diversity of this species. This collection includes commercial cultivars and Spanish landraces, which represent the great diversification of types that have arisen in Europe after this species arrived from America. For the molecular variability studies, two PCR-based systems were employed, AFLP and SRAP, which preferentially amplify ORFs. Principal coordinates analysis and cluster analysis using the UPGMA method clearly separate the accessions into the two subspecies through the use of both markers. However, the gene diversity and the genetic identity values among morphotypes and subspecies varied between the two marker systems. The information given by SRAP markers was more concordant to the morphological variability and to the evolutionary history of the morphotypes than that of AFLP markers. In ssp. ovifera, the accessions of the different morphotypes were basically grouped according to the fruit colour. This may indicate different times of development and also the extent of breeding in the accessions used. This study has allowed identification of new types that can be employed for the development of new cultivars. The landraces of the spp. ovifera, used as ornamental in Europe, have proved to be of great interest for preserving the diversity of C. pepo.

Keywords

Cucurbita pepo Germplasm collection AFLP markers SRAP markers 

Notes

Acknowledgements

The authors thank the North Central Regional Plant Introduction Station, the National Center for Genetic Resources Preservation, the Institute for Plant Genetics and Crop Plant Research and the Research Institute of Vegetable Crops for providing seeds of some commercial cultivars and landraces, and their passport data.

References

  1. Altschul SE, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bonnema G, van der Berg P, Lindhout P (2002) AFLPs mark different genomic regions compared with RFLPs: a case study in tomato. Genome 45:217–221CrossRefPubMedGoogle Scholar
  3. Chono M, Nemoto K, Yamane H, Yamaguchi I, Murofushi N (1998) Characterization of a protein kinase gene responsive to auxin and gibberellin in cucumber hypocotyls. Plant Cell Physiol 39:958–967PubMedGoogle Scholar
  4. Clayberg CD (1992) Reinterpretation of fruit color inheritance in Cucurbita pepo L. Cucurbit Genet Coop Rep 15:90–92Google Scholar
  5. Decker DS (1985) Numerical analysis of allozyme variation in Cucurbita pepo. Econ Bot 39:300–309Google Scholar
  6. Decker DS (1988) Origin(s), evolution and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15Google Scholar
  7. Decker DS, Wilson HD (1987) Allozyme variation in the Cucurbita pepo complex: C. pepo var. ovifera vs C. texana. Syst Bot 12:263–273Google Scholar
  8. Decker-Walters DS, Walters TW, Posluzny U, Kevan PG (1990) Genealogy and gene flow among annual domesticated species of Cucurbita. Can J Bot 68:782–789Google Scholar
  9. Decker-Walters DS, Staub JE, Chung SM, Nakata E, Quemada HD (2002) Diversity in free-living populations of Cucurbita pepo (Cucurbitaceae) as assessed by Random Amplified Polymorphic DNA. Syst Bot 27:19–28Google Scholar
  10. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Esquinas-Alcázar JT, Gulick PJ (1983) Genetic resources of Cucurbitaceae – a global report. International Board for Plant Genetic Resources, IBPGR Secretariat, RomeGoogle Scholar
  12. Ferriol M, Picó B, Nuez F (2003) Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genet Res Crop Evol (in press)Google Scholar
  13. Ignart F, Weeden NF (1984) Allozyme variation in cultivars of Cucurbita pepo L. Euphytica 33:779–785Google Scholar
  14. Jobst J, King K, Hemleben V (1998) Molecular evolution of the internal transcribed spacers (Its1 and Its2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol Phylogenet Evol 9:204–219CrossRefPubMedGoogle Scholar
  15. Katzir N, Tadmor Y, Tzuri G, Leshzashen E, Mozes-Daube N, Danin-Poleg Y, Paris HS (2000) Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. In: Katzir N, Paris HS (eds) Proc Cucurbitaceae 2000, Acta Hort 510, Israel, pp 433–439Google Scholar
  16. Katzir N, Portnoy V, Yonash N, Mozes-Daube N, Tzuri G, Paris HS (2002) Use of AFLP, ISSR, and SSR marker systems to assess genetic diversity in Cucurbita pepo. Plant, Animal and Microbe Genomes Xth Conference, San Diego, California, 10:121Google Scholar
  17. Kirkpatrick KJ, Wilson HD (1988) Interspecific gene flow in Cucurbita: C. texana vs C. pepo. Am J Bot 75:517–525Google Scholar
  18. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  19. Naudin C (1856) Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Ann Sci Nat Bot IV 6:5–73Google Scholar
  20. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  21. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedGoogle Scholar
  22. Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 79:5269–5273Google Scholar
  23. Nuez F, Ruiz JJ, Valcárcel JV, Fernández de Córdova P (2000) Colección de semillas de calabaza del Centro de Conservación y Mejora de la Agrodiversidad Valenciana. Monografías INIA, Agrícola 4, MadridGoogle Scholar
  24. Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:113–138Google Scholar
  25. Paris HS (1989) Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Bot 43:423–443Google Scholar
  26. Paris HS (1998) Some observations concerning diversity in the subspecies and horticultural groups of Cucurbita pepo. Cucurbit Genet Coop Rep 21:51–53Google Scholar
  27. Paris HS (2000) Paintings (1769–1774) by AN Duchesne and the history of Cucurbita pepo. Ann Bot 85:815–830CrossRefGoogle Scholar
  28. Paris HS (2001) History of the cultivar-groups of Cucurbita pepo. Hort Rev 25:71–170Google Scholar
  29. Paris HS, Nerson H (1986) Genes for intense pigmentation of squash. J Hered 77:403–409Google Scholar
  30. Pearson WR (1994) Using the FASTA program to search protein and DNA sequence databases. In: Griffin AM, Griffin HG (eds) Computer analysis of sequence data, part I. Humana Press, Totowa, New Jersey, pp 307–331Google Scholar
  31. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540CrossRefPubMedGoogle Scholar
  32. Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276:932–934CrossRefGoogle Scholar
  33. Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman and Co, San FranciscoGoogle Scholar
  34. Stumm GB, Vedder H, Schlegel J (1997) A simple method for isolation of PCR fragments from silver-stained polyacrylamide gels by scratching with a fine needle. Trends Genet 1:1115Google Scholar
  35. Torres-Ruiz RA, Hemleben V (1991) Use of ribosomal DNA spacer probes to distinguish cultivars of Cucurbita pepo L. and other Cucurbitaceae. Euphytica 53:11–17Google Scholar
  36. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  37. Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798CrossRefGoogle Scholar
  38. Wilson HD, Doebley J, Duvall M (1992) Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theor Appl Genet 84:859–865Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Center for Conservation and Breeding of the Agricultural Diversity (COMAV), Polytechnic University of Valencia, Camino de Vera 14, Valencia 46022, Spain

Personalised recommendations