Theoretical and Applied Genetics

, Volume 106, Issue 7, pp 1191–1195 | Cite as

Microsatellite genotyping of carnation varieties

  • M. J. M. SmuldersEmail author
  • Y. Noordijk
  • W. Rus-Kortekaas
  • G. M. M. Bredemeijer
  • B. Vosman


A set of 11 sequence-tagged microsatellite markers for carnation (Dianthus caryophyllus) was developed using a DNA library enriched for microsatellites. Supplemented with three markers derived from sequence database entries, these were used to genotype carnation varieties using a semi-automated fluorescence-based approach. In a set of 82 cultivars, the markers amplified 4–16 alleles each. The effective number of alleles varied from 1.9 to 6.0. For the eight best scorable markers, heterozygosity was between 0.51 and 0.99. The markers were able to distinguish all cultivars with a unique combination of alleles, except for sport mutants, which were readily grouped together with the original cultivar. In addition, one group of three and one group of six cultivars each had the same combination of 'allelic peaks'. The cluster of three varieties concerned original cultivars and their mutants. The cluster of six consisted of four mutants from the same cultivar and two other varieties.


Variety Identification Distinction Sequence-tagged microsatellite site Simple sequence repeat 



We wish to thank Nicolien Pieterse for advice. This research was funded by the Netherlands' Ministry of Agriculture, Nature Management and Fisheries (LNV).


  1. Bernatzky R, Tanksley SD (1986) Genetics of actin-related sequences in tomato. Theor Appl Genet 72:314–321Google Scholar
  2. Bredemeijer GMM, Arens P, Wouters D, Visser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590CrossRefGoogle Scholar
  3. Bredemeijer GMM, Cooke RJ, Ganal MW, Peeters R, Isaac P, Noordijk Y, Rendell S, Jackson J, Röder MS, Wendehake K, Dijcks M, Amelaine M, Wickaert V, Bertrand L, Vosman B (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105:1019–1026Google Scholar
  4. Brownstein ML, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010Google Scholar
  5. Corbett G, Lee D, Donini P, Cooke RJ (2001) Identification of potato varieties by DNA profiling. Acta Hortic 546:387–390Google Scholar
  6. Esselink D, Smulders MJM, Vosman B (2002) Identification of cut-rose (Rosa hybrida) and rootstock varieties using robust Sequence Tagged Microsatellite markers. Theor Appl Genet (in press)Google Scholar
  7. Karagyozov L, Kalcheva ID, Chapman M (1993) Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Res 21:3911–3912PubMedGoogle Scholar
  8. Luce C, Noyer JL, Tharreau D, Ahmadi N, Feyt H (2001) The use of microsatellite markers to examine the diversity of the genetic resources of rice (Oryza sativa) adapted to European conditions. Acta Hortic 546:221–235Google Scholar
  9. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007Google Scholar
  10. Röder MS, Wendehake K, Korzun V, Bredemeijer G, Isaac P, Cooke RJ, Vosman B, Ganal MW (2002) Construction and analysis of a microsatellite-based database for European wheat cultivars. Theor Appl Genet (in press)Google Scholar
  11. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272CrossRefGoogle Scholar
  12. Smulders MJM, Rus-Kortekaas W, Vosman B (2000) Microsatellite markers useful throughout the genus Dianthus. Genome 43:208–210CrossRefPubMedGoogle Scholar
  13. Van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome 42:139–149PubMedGoogle Scholar
  14. Vosman B, Arens P, Rus-Kortekaas W, Smulders MJM (1992) Identification of highly polymorphic DNA regions in tomato. Theor Appl Genet 85:239–244Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. J. M. Smulders
    • 1
    Email author
  • Y. Noordijk
    • 1
  • W. Rus-Kortekaas
    • 1
  • G. M. M. Bredemeijer
    • 1
  • B. Vosman
    • 1
  1. 1.Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands

Personalised recommendations