Advertisement

Der Urologe

, Volume 58, Issue 11, pp 1272–1280 | Cite as

Aktuelle Konzepte zur Pathogenese von Harnsteinen

  • R. MagerEmail author
  • A. Neisius
Leitthema

Zusammenfassung

Die Entstehung von Nierensteinen ist ein multifaktorieller Prozess. Während für Harnsäure‑, Zystin- und Xanthinsteine ätiopathogenetisch die Übersättigung und Kristallisation ausschlaggebend sind, wird die Formation calciumbasierter Steine, die die Mehrheit aller Steinarten darstellen, durch dieses physikochemische Konzept nicht ausreichend erklärt. Aktuelle Konzepte gehen von einer nidusassoziierten Steinbildung der calciumbasierten Nephrolithiasis an Randall-Plaques oder an Ductus-Bellini-Plugs aus. Während Randall-Plaques infolge eines nicht vollständig geklärten Zusammenspiels aus interstitieller Calciumübersättigung in der Papille, vaskulären und interstitiellen Inflammationsprozessen und mineralischen Ablagerungen von „calcifying nanoparticles“ an der Basalmembran des dünnen aufsteigenden Asts der Henle-Schleife entstehen, sind Ductus-Bellini-Plugs auf mineralische Ablagerungen am Rand des Sammelrohrlumens zurückzuführen. Für das weitere Steinwachstum im Kelchurin ist die Interaktion von Matrixproteinen mit calciumübersättigtem Urin unter ungünstigem Verhältnis von Promotoren gegenüber Inhibitoren der Lithogenese verantwortlich, wobei diese Vorgänge ebenfalls noch nicht abschließend ergründet sind. Obwohl die bisherige Forschung mit der Aufklärung über die Physiologie von Nephron und Papille, der Analyse medullärer vaskulärer, inflammatorischer und kalzifizierender Prozesse und der Untersuchung des Proteoms, des Mikrobioms, der Promotoren und Inhibitoren der Steinbildung im Urin sowie erste genomweite Assoziationsstudien viele Faktoren der Steinbildung aufgedeckt haben, sind weitere Forschungsbemühungen erforderlich, um die Lücken im Verständnis der komplexen Zusammenhänge schließen zu können und über den aktuellen Wissensstand hinausgehende prophylaktische, therapeutische oder metaphylaktische Werkzeuge zu erhalten.

Schlüsselwörter

Nephrolithiasis Randall-Plaques Idiopathische Hyperkalziurie Kalzifizierung Kalzifizierende Nanopartikel 

Current concepts on the pathogenesis of urinary stones

Abstract

The process of kidney stone formation is complex and still not completely understood. Supersaturation and crystallization are the main drivers for the etiopathogenesis of uric acid, xanthine and cystine stones but this physicochemical concept fails to adequately explain the formation of calcium-based nephrolithiasis, which represents the majority of kidney stones. Contemporary concepts of the pathogenesis of calcium-based nephrolithiasis focus on a nidus-associated stone formation of calcium-based nephrolithiasis on Randall’s plaques or on plugs of Bellini’s duct. Randall’s plaques originate from the interaction of interstitial calcium supersaturation in the renal papilla, vascular and interstitial inflammatory processes and mineral deposits of calcifying nanoparticles on the basal membrane of the thin ascending branch of the loop of Henle; however, plugs of Bellini’s duct are assumed to be caused by mineral deposits on the wall of the collecting ducts. Aggregation and overgrowth are influenced by the interaction of matrix proteins with calcium supersaturated urine, by an imbalance between promoters and inhibitors of stone formation in the calyceal urine. Current research has elucidated many factors contributing to stone formation by revealing novel insights into the physiology of nephron and papilla, by analyzing vascular, inflammatory and calcifying processes in the renal medulla, by examining the proteome, the microbiome, promoters and inhibitors of stone formation in the urine and by conducting the first genome-wide association studies; however, more future research is mandatory to fill the gap of knowledge and hopefully, to obtain novel prophylactic, therapeutic and metaphylactic tools beyond the current state of knowledge.

Keywords

Nephrolithiasis Randall’s plaques Idiopathic hypercalciuria Calcification Calcifying nanoparticles 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Mager und A. Neisius geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Prattley S, Voss J, Cheung S, Geraghty R, Jones P, Somani BK (2018) Ureteroscopy and stone treatment in the elderly (〉/=70 years): prospective outcomes over 5‑ years with a review of literature. Int Braz J Urol 44:750–757PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Türk C, Neisius A, Petrik A, et al Urolithiasis. EAU Guidelines Edn presented at the EAU Annual Congress Barcelona 2019 EAU Guidelines Office, Arnhem, The Netherlands, 2018Google Scholar
  3. 3.
    Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009–1027 (Jun)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Evan AP, Worcester EM, Coe FL, Williams J Jr., Lingeman JE (2015) Mechanisms of human kidney stone formation. Urolithiasis 43(Suppl 1):19–32PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Williams JC Jr., Borofsky MS, Bledsoe SB et al (2018) Papillary Ductal Plugging is a Mechanism for Early Stone Retention in Brushite Stone Disease. J Urol 199:186–192 (Jan)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Matlaga BR, Williams JC Jr., Kim SC et al (2006) Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 175:1720–1724 (discussion 4)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cooke SA (1970) The site of calcification in the human renal papilla. Br J Surg 57:890–896 (Dec)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Evan AP, Coe FL, Lingeman J, Bledsoe S, Worcester EM (2018) Randall’s plaque in stone formers originates in ascending thin limbs. Am J Physiol Renal Physiol 1(315):F1236–F42CrossRefGoogle Scholar
  9. 9.
    Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318 (Apr)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Verrier C, Bazin D, Huguet L et al (2016) Topography, composition and structure of incipient Randall plaque at the nanoscale level. J Urol 196:1566–1574 (Nov)PubMedCrossRefGoogle Scholar
  11. 11.
    Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100 (Mar)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sherer BA, Chen L, Kang M et al (2018) A continuum of mineralization from human renal pyramid to stones on stems. Acta Biomater 15(71):72–85CrossRefGoogle Scholar
  13. 13.
    Wiener SV, Chen L, Shimotake AR, Kang M, Stoller ML, Ho SP (2018) Novel insights into renal mineralization and stone formation through advanced imaging modalities. Connect Tissue Res 59:102–110 (Dec)PubMedCrossRefGoogle Scholar
  14. 14.
    Ciftcioglu N, Vejdani K, Lee O et al (2008) Association between Randall’s plaque and calcifying nanoparticles. Int J Nanomedicine 3:105–115PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kumon H, Matsumoto A, Uehara S et al (2011) Detection and isolation of nanobacteria-like particles from urinary stones: long-withheld data. Int J Urol 18:458–465 (Jun)PubMedCrossRefGoogle Scholar
  16. 16.
    Young JD, Martel J, Young D et al (2009) Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria. PLoS ONE 4:e5421PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kajander EO (2006) Nanobacteria—propagating calcifying nanoparticles. Lett Appl Microbiol 42:549–552 (Jun)PubMedGoogle Scholar
  18. 18.
    Kumon H, Matsuura E, Nagaoka N et al (2014) Ectopic calcification: importance of common nanoparticle scaffolds containing oxidized acidic lipids. Nanomedicine 10:441–450 (Feb)PubMedCrossRefGoogle Scholar
  19. 19.
    Martel J, Wu CY, Young JD (2010) Critical evaluation of gamma-irradiated serum used as feeder in the culture and demonstration of putative nanobacteria and calcifying nanoparticles. PLoS ONE 5:e10343PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wu CY, Young L, Young D, Martel J, Young JD (2013) Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLoS ONE 8:e75501PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Okada A, Yasui T, Hamamoto S et al (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Taguchi K, Hamamoto S, Okada A et al (2019) Helper T‑cell signaling and inflammatory pathway lead to formation of calcium phosphate but not calcium oxalate stones on Randall’s plaques. Int J Urol 26:670–677 (Jun)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Taguchi K, Hamamoto S, Okada A et al (2017) Genome-wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol 28:333–347 (Jan)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Schwartz MA, Lieske JC, Kumar V, Farell-Baril G, Miller VM (2008) Human-derived nanoparticles and vascular response to injury in rabbit carotid arteries: proof of principle. Int J Nanomedicine 3:243–248PubMedPubMedCentralGoogle Scholar
  25. 25.
    Taylor ER, Stoller ML (2015) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl 1):41–45PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924 (May)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Palsson R, Indridason OS, Edvardsson VO, Oddsson A (2019) Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis 47:11–21 (Feb)CrossRefGoogle Scholar
  28. 28.
    Evan AE, Lingeman JE, Coe FL et al (2008) Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int 74:223–229 (Jul)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Evan AP, Coe FL, Lingeman JE et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (hoboken) 290:1315–1323 (Oct)CrossRefGoogle Scholar
  30. 30.
    Rodgers AL (2017) Physicochemical mechanisms of stone formation. Urolithiasis 45:27–32 (Feb)PubMedCrossRefGoogle Scholar
  31. 31.
    Wesson JA, Kolbach-Mandel AM, Hoffmann BR, Davis C, Mandel NS (2019) Selective protein enrichment in calcium oxalate stone matrix: a window to pathogenesis? Urolithiasis.  https://doi.org/10.1007/s00240-019-01131-3 CrossRefPubMedGoogle Scholar
  32. 32.
    Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115:2598–2608 (Oct)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jones JA, Ciftcioglu N, Schmid JF, Barr YR, Griffith D (2009) Calcifying nanoparticles (nanobacteria): an additional potential factor for urolithiasis in space flight crews. Urology 73(210):e11–3Google Scholar
  34. 34.
    Rizzato G, Colombo P (1996) Nephrolithiasis as a presenting feature of chronic sarcoidosis: a prospective study. Sarcoidosis Vasc Diffuse Lung Dis 13:167–172 (Sep)PubMedGoogle Scholar
  35. 35.
    Mohebbi N, Wagner CA (2018) Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis. J Nephrol 31:511–522 (Aug)PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JA, Stern JM (2019) Understanding the Link Between Gut Microbiome and Urinary Stone Disease. Curr Urol Rep 22(20):19CrossRefGoogle Scholar
  37. 37.
    Albala DM, Prien EL Jr., Galal HA (1994) Urolithiasis as a hazard of sulfonamide therapy. J Endourol 8:401–403 (Dec)PubMedCrossRefGoogle Scholar
  38. 38.
    Andreassen KH, Pedersen KV, Osther SS, Jung HU, Lildal SK, Osther PJ (2016) How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis 44:65–76 (Feb)PubMedCrossRefGoogle Scholar
  39. 39.
    Cameron MA, Sakhaee K (2007) Uric acid nephrolithiasis. Urol Clin North Am 34:335–346 (Aug)PubMedCrossRefGoogle Scholar
  40. 40.
    Carr MC, Prien EL Jr., Babayan RK (1990) Triamterene nephrolithiasis: renewed attention is warranted. J Urol 144:1339–1340 (Dec)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Grases F, Costa-Bauza A, Roig J, Rodriguez A (2018) Xanthine urolithiasis: Inhibitors of xanthine crystallization. PLoS ONE 13:e198881PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Izzedine H, Lescure FX, Bonnet F (2014) HIV medication-based urolithiasis. Clin Kidney J 7:121–126 (Apr)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Knoll T (2014) Urolithiasis. In: Schmelz HU, Sparwasser C, Weidner W (Hrsg) Facharztwissen Urologie, 3. Aufl. Springer, Berlin, HeidelbergGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Urologie und KinderurologieUniversitätsmedizin MainzMainzDeutschland
  2. 2.Abteilung für Urologie und KinderurologieKrankenhaus der Barmherzigen Brüder TrierTrierDeutschland

Personalised recommendations