Advertisement

Der Urologe

pp 1–9 | Cite as

Bildgebung im Rahmen der Primärdiagnostik beim lokal begrenzten Prostatakarzinom

  • D. BonekampEmail author
  • G. Salomon
Leitthema
  • 17 Downloads

Zusammenfassung

Im Rahmen der Primärdiagnostik des Prostatakarzinoms (PCA) vollzieht sich derzeit ein Paradigmenwechsel von der systematischen Stanzbiopsie mit der Magnetresonanztomographie (MRT) als Problemlöser hin zum flächendeckenden Einsatz der MRT vor Biopsie mit dem Einsatz von Fusionsverfahren zur gezielten Biopsie von Prostataläsionen. Damit verliert das PCA die letzte Bastion eines soliden Tumors, der durch ungezielte Biopsien primär diagnostiziert wird und reiht sich in die anderen soliden Tumoren ein, welche ebenfalls durch gezielte bildgebende Verfahren vor bioptischer Sicherung lokalisiert werden. Die Komplexität des Hintergrundsignals der Prostata macht jedoch die Lokalisation zu einem nicht trivialen Unterfangen, daher soll in diesem Artikel ein Überblick über die multiparametrische MRT und ihre strukturierte Befundung anhand des PI-RADSv2-Systems („prostate imaging reporting and data system version 2“) sowie neue Ultraschallverfahren zur Primärdiagnostik gegeben werden.

Schlüsselwörter

Prostataneoplasien Magnetresonanztomographie Diffusion Perfusion Ultraschall 

Imaging for initial diagnosis of localized prostate cancer

Abstract

The initial diagnosis of prostate cancer has been traditionally performed using systematic core biopsies with the use of magnetic resonance imaging (MRI) reserved to problem-solving scenarios. There is currently an ongoing paradigm shift towards the use of MRI prior to targeted biopsy as the standard approach. Prostate cancer therefore does not remain the last solid tumor entity diagnosed by non-targeted techniques but joins other solid tumor entities for which targeted diagnostic approaches have existed for a while. However, the complexity of the background tissue signal in the prostate makes lesion detection challenging. This article will provide an overview of the components of multiparametric prostate MRI and their interpretation using structured interpretation according to the current PI-RADSv2 (Prostate Imaging Reporting and Data System version 2) guidelines and of novel ultrasound techniques for primary diagnosis.

Keywords

Prostatic neoplasms Magnetic resonance imaging Diffusion Perfusion Ultrasound 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Bonekamp ist Sprecher für Profound Medical Inc. G. Salomon gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bonekamp D et al (2011) Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 31(3):677–703PubMedPubMedCentralGoogle Scholar
  2. 2.
    Weinreb JC et al (2016) PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur Urol 69(1):16–40PubMedGoogle Scholar
  3. 3.
    Frauscher F, Klauser A, Halpern EJ (2002) Advances in ultrasound for the detection of prostate cancer. Ultrasound Q 18(2):135–142PubMedGoogle Scholar
  4. 4.
    Schlenker B, Clevert DA, Salomon G (2014) Sonographic imaging of the prostate. Urologe A 53(7):1052–1060PubMedGoogle Scholar
  5. 5.
    Postema AW et al (2017) The prostate cancer detection rates of CEUS-targeted versus MRI-targeted versus systematic TRUS-guided biopsies in biopsy-naive men: a prospective, comparative clinical trial using the same patients. Bmc Urol 17(1):27PubMedPubMedCentralGoogle Scholar
  6. 6.
    Salomon G et al (2008) Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol 54(6):1354–1362PubMedGoogle Scholar
  7. 7.
    Mannaerts CK et al (2018) Multiparametric ultrasound: evaluation of greyscale, shear wave elastography and contrast-enhanced ultrasound for prostate cancer detection and localization in correlation to radical prostatectomy specimens. Bmc Urol 18(1):98PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ghai S et al (2016) Assessing cancer risk on novel 29 MHz micro-ultrasound images of the prostate: creation of the micro-ultrasound protocol for prostate risk identification. J Urol 196(2):562–569PubMedGoogle Scholar
  9. 9.
    Rosenkrantz AB, Taneja SS (2014) Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. AJR Am J Roentgenol 202(1):109–120PubMedGoogle Scholar
  10. 10.
    Le Bihan D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407PubMedGoogle Scholar
  11. 11.
    Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Rev Clin Oncol 5(4):220Google Scholar
  12. 12.
    Issa B (2002) In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 16(2):196–200PubMedGoogle Scholar
  13. 13.
    Le Bihan D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedGoogle Scholar
  14. 14.
    Lu H et al (2006) Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 19(2):236–247PubMedGoogle Scholar
  15. 15.
    Bittencourt LK et al (2014) Feasibility study of computed vs measured high b‑value (1400 s/mm²) diffusion-weighted MR images of the prostate. World J Radiol 6(6):374PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hambrock T et al (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461PubMedGoogle Scholar
  17. 17.
    Yoshizako T et al (2008) Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta radiol 49(10):1207–1213PubMedGoogle Scholar
  18. 18.
    Kim CK, Park BK, Kim B (2010) Diffusion-weighted MRI at 3 T for the evaluation of prostate cancer. AJR Am J Roentgenol 194(6):1461–1469PubMedGoogle Scholar
  19. 19.
    Bonekamp D, Macura KJ (2008) Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging 19(6):273–284PubMedGoogle Scholar
  20. 20.
    Othman AE et al (2016) Effect of temporal resolution on diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging of the prostate. Invest Radiol 51(5):290–296PubMedGoogle Scholar
  21. 21.
    Huisman HJ, Engelbrecht MR, Barentsz JO (2001) Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate. J Magn Reson Imaging 13(4):607–614PubMedGoogle Scholar
  22. 22.
    Kuhl CK et al (2017) Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 285(2):493–505PubMedGoogle Scholar
  23. 23.
    Marckmann P et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362PubMedGoogle Scholar
  24. 24.
    McDonald RJ et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782PubMedGoogle Scholar
  25. 25.
    Reinsberg SA et al (2007) Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188(1):91–98PubMedGoogle Scholar
  26. 26.
    Jeener J et al (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71(11):4546–4553Google Scholar
  27. 27.
    Ahmed HU et al (2009) Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol 6(4):197PubMedGoogle Scholar
  28. 28.
    Kuru TH et al (2013) Definitions of terms, processes and a minimum dataset for transperineal prostate biopsies: a standardization approach of the Ginsburg Study Group for Enhanced Prostate Diagnostics. BJU Int 112(5):568–577PubMedGoogle Scholar
  29. 29.
    Bonekamp D et al (2018) Radiomic machine learning for characterization of prostate lesions with MRI: comparison to ADC values. Radiology 289(1):128–137PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung für Radiologie (E010)Deutsches KrebsforschungszentrumHeidelbergDeutschland
  2. 2.Martini-KlinikUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations