Advertisement

Der Urologe

, Volume 58, Issue 4, pp 418–423 | Cite as

Positronenemissionstomographie bei Keimzelltumoren des Mannes

Einsatzmöglichkeiten und Grenzen
  • P. Schriefer
  • M. Hartmann
  • K. Oechsle
  • C. P. Meyer
  • S. Klutmann
  • M. Fisch
  • C. Bokemeyer
  • C. OingEmail author
Übersichten

Zusammenfassung

Hintergrund

Problemfelder konventioneller Bildgebung bei Keimzelltumoren sind die sichere Differenzierung der klinischen Stadien I und IIA, die Lokalisation okkulter Markerrezidive und die Beurteilung der Vitalität postchemotherapeutischer Residualtumoren.

Ziel der Arbeit

Diese Übersichtsarbeit gibt einen Überblick über die diagnostische Aussagekraft und Limitationen der FDG-PET-CT bei seminomatösen und nichtseminomatösen Keimzelltumoren.

Material und Methoden

Diese Übersichtsarbeit basiert auf einer Literaturrecherche von Pubmed/MEDLINE aus den Jahren 1990–2018 sowie Kongressbeiträgen der ASCO- und EAU-Jahrestagungen 2014–2017.

Ergebnisse

In der primären Ausbreitungsdiagnostik testikulärer Keimzelltumoren im klinischen Stadium I hat die PET-CT keinen Vorteil gegenüber der klassischen CT. Bei der Beurteilung der Vitalität postchemotherapeutischer Seminomresiduen >3 cm hilft eine PET-Negativität bei der Entscheidung für oder gegen zusätzliche Lokalmaßnahmen oder eine erneute Chemotherapie. Auch PET-positive Residualtumoren führen nicht zwangsläufig zum Rezidiv. Beim Nichtseminom ist die Aussagekraft der PET-Diagnostik aufgrund möglicher reifer Teratomanteile limitiert, da diese regelhaft PET-negativ sind.

Schlussfolgerungen

Die FDG-PET wird in aktuellen Leitlinien zur Vitalitätsbeurteilung seminomatöser Residualtumoren >3 cm empfohlen. Individuelle Ausnahmesituationen, in denen eine PET-Diagnostik beim Nichtseminom sinnvoll sein kann, sind: (i) weiterführende Ausbreitungsdiagnostik im klinischen Stadium IS, (ii) Vitalitätsbeurteilung von Residualtumoren ohne Teratomanteile im Primärtumor bei Unmöglichkeit der vollständigen Residualtumorresektion, (iii) Tumorsuche bei CT-graphisch okkultem Markerrezidiv, (iv) frühe Beurteilung des Ansprechens während einer Chemotherapie.

Schlüsselwörter

Hodentumor Keimzelltumor Residualtumor Seminom Positronen-Emissions-Tomographie 

Positron emission tomography in germ cell tumors in men

Possibilities and limitations

Abstract

Background

Conventional radiographic imaging may fail to safely distinguish clinical stage I from stage IIA germ cell cancer, to localize isolated tumor marker relapses, and to equivocally identify the viability of postchemotherapy residual masses.

Objectives

To provide an overview of the diagnostic value and limitations of functional imaging by positron emission tomography with 2‑deoxy-2-[fluorine-18]fluoro-D-glucose with computed tomography (18F-FDG-PET-CT) in male germ cell cancer.

Materials and methods

A narrative review based on a literature search of PubMed/MEDLINE for original articles published from 1990–2018 and conference proceedings of ASCO (American Society of Clinical Oncology) and EAU (European Association of Urology) annual meetings 2014–2017 is presented.

Results

18F-FDG-PET-CT does not improve diagnostic accuracy compared to conventional CT imaging clinical stage (CS) I disease. Particularly PET-negativity of postchemotherapy residual masses of seminomas >3 cm in size guide decision-making against further additional treatment. Even PET-positive residues must not result in relapse. For nonseminoma, the value of PET imaging is reduced by potential mature teratoma components, which are commonly PET negative.

Conclusions

Current guidelines recommend 18F-FDG-PET-CT 6–8 weeks postchemotherapy for viability assessment of seminoma residues >3 cm in size. Exceptional circumstances, in which 18F-FDG-PET-CT may be helpful, include: (1) detection of active disease in CS IS, (2) viability assessment of residual masses >1 cm where complete secondary resection is impossible, (3) staging at marker relapse with unconspicuous conventional CT scan, (4) early response assessment during chemotherapy.

Keywords

Testicular cancer Germ cell tumor Residual neoplasm Positron emission tomography Seminoma 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Schriefer, M. Hartmann, K. Oechsle, C.P. Meyer, S. Klutmann, M. Fisch, C. Bokemeyer und C. Oing geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bosl GJ, Motzer RJ (1997) Testicular germ-cell cancer. N Engl J Med 337(4):242–253CrossRefGoogle Scholar
  2. 2.
    Oldenburg J et al (2013) Testicular seminoma and non-seminoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi125–vi132CrossRefGoogle Scholar
  3. 3.
    Albers P et al (2015) Guidelines on testicular cancer: 2015 update. Eur Urol 68(6):1054–1068CrossRefGoogle Scholar
  4. 4.
    M. DS et al (2011) Radiographic diagnosis and staging. In: L. M et al (Hrsg) Cancer of the Tesits. Springer, London., S 75–94Google Scholar
  5. 5.
    Huang B, Law MW, Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1):166–174CrossRefGoogle Scholar
  6. 6.
    ICRP (2008) Radiation dose to patients from Radiopharmaceuticals—addendum 3 to ICRP publication 53. ICRP publication 106. Ann Icrp 38:1–2CrossRefGoogle Scholar
  7. 7.
    Kitajima K et al (2007) Normal uptake of 18F-FDG in the testis: an assessment by PET/CT. Ann Nucl Med 21(7):405–410CrossRefGoogle Scholar
  8. 8.
    Cremerius U et al (1998) FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 39(5):815–822PubMedGoogle Scholar
  9. 9.
    Albers P et al (1999) Positron emission tomography in the clinical staging of patients with Stage I and II testicular germ cell tumors. Urology 53(4):808–811CrossRefGoogle Scholar
  10. 10.
    Beyer J et al (2013) Maintaining success, reducing treatment burden, focusing on survivorship: highlights from the third European consensus conference on diagnosis and treatment of germ-cell cancer. Ann Oncol 24(4):878–888CrossRefGoogle Scholar
  11. 11.
    Hain SF et al (2000) Fluorodeoxyglucose PET in the initial staging of germ cell tumours. Eur J Nucl Med 27(5):590–594CrossRefGoogle Scholar
  12. 12.
    Horwich A et al (1997) Residual mass following chemotherapy of seminoma. Ann Oncol 8(1):37–40CrossRefGoogle Scholar
  13. 13.
    De Santis M et al (2004) 2‑18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22(6):1034–1039CrossRefGoogle Scholar
  14. 14.
    De Santis M et al (2001) Predictive impact of 2‑18fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. J Clin Oncol 19(17):3740–3744CrossRefGoogle Scholar
  15. 15.
    Bachner M et al (2012) 2‑(1)(8)fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions: a retrospective validation of the SEMPET trial. Ann Oncol 23(1):59–64CrossRefGoogle Scholar
  16. 16.
    Oing C et al (2018) PET-CT bei Hodentumoren – Einsatz mit Bedacht. Hamb Arztebl 72(4):30–32Google Scholar
  17. 17.
    Cathomas R et al (2017) FDG PET scan (PET) positive residual lesions after chemotherapy (chemo) for metastatic seminoma: results of an international global germ cell cancer group (G3) registry. J Clin Oncol 35(suppl):4521CrossRefGoogle Scholar
  18. 18.
    Ganjoo KN et al (1999) Positron emission tomography scans in the evaluation of postchemotherapy residual masses in patients with seminoma. J Clin Oncol 17(11):3457–3460CrossRefGoogle Scholar
  19. 19.
    Steyerberg EW et al (1998) Validity of predictions of residual retroperitoneal mass histology in nonseminomatous testicular cancer. J Clin Oncol 16(1):269–274CrossRefGoogle Scholar
  20. 20.
    Kollmannsberger C et al (2002) Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma. Cancer 94(9):2353–2362CrossRefGoogle Scholar
  21. 21.
    Pfannenberg AC et al (2004) The role of [(18)F] FDG-PET, CT/MRI and tumor marker kinetics in the evaluation of post chemotherapy residual masses in metastatic germ cell tumors—prospects for management. World J Urol 22(2):132–139CrossRefGoogle Scholar
  22. 22.
    Spermon JR et al (2002) The role of (18)fluoro-2-deoxyglucose positron emission tomography in initial staging and re-staging after chemotherapy for testicular germ cell tumours. BJU Int 89(6):549–556CrossRefGoogle Scholar
  23. 23.
    Oechsle K et al (2008) [18F]Fluorodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. J Clin Oncol 26(36):5930–5935CrossRefGoogle Scholar
  24. 24.
    Heidenreich A et al (2017) When is surgical resection of metastases in testicular germ cell tumors indicated and is there a scientific basis? Urologe A 56(5):627–636CrossRefGoogle Scholar
  25. 25.
    Lorch A et al (2011) Conventional-dose versus high-dose chemotherapy as first salvage treatment in male patients with metastatic germ cell tumors: evidence from a large international database. J Clin Oncol 29(16):2178–2184CrossRefGoogle Scholar
  26. 26.
    Bokemeyer C et al (2002) Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [(18)F]FDG PET. Br J Cancer 86(4):506–511CrossRefGoogle Scholar
  27. 27.
    Lassen U et al (2003) Whole-body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med Mol Imaging 30(3):396–402CrossRefGoogle Scholar
  28. 28.
    Huddart RA et al (2007) 18fluorodeoxyglucose positron emission tomography in the prediction of relapse in patients with high-risk, clinical stage I nonseminomatous germ cell tumors: preliminary report of MRC Trial TE22—the NCRI Testis Tumour Clinical Study Group. J Clin Oncol 25(21):3090–3095CrossRefGoogle Scholar
  29. 29.
    Hain SF et al (2000) Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer 83(7):863–869CrossRefGoogle Scholar
  30. 30.
    Cook GJ et al (2015) The role of 18F-FDG PET/CT in the management of testicular cancers. Nucl Med Commun 36(7):702–708CrossRefGoogle Scholar
  31. 31.
    Paffenholz P et al (2017) Non-guideline-concordant treatment of testicular cancer is associated with reduced relapse-free survival. Clin Genitourin Cancer 16(1):e243–e250CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • P. Schriefer
    • 1
  • M. Hartmann
    • 1
  • K. Oechsle
    • 2
  • C. P. Meyer
    • 1
  • S. Klutmann
    • 3
  • M. Fisch
    • 1
  • C. Bokemeyer
    • 2
  • C. Oing
    • 2
    Email author
  1. 1.Klinik und Poliklinik für UrologieUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  2. 2.Klinik für Onkologie, Hämatologie und Knochenmarktransplantation mit Abteilung für PneumologieUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  3. 3.Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie und NuklearmedizinUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations