Advertisement

Der Urologe

, Volume 56, Issue 7, pp 933–944 | Cite as

Genetische Marker und Prognosefaktoren beim Prostatakarzinom

  • A. KretschmerEmail author
  • Y. Tolkach
  • J. Ellinger
  • G. Kristiansen
CME

Zusammenfassung

In der Ära der personalisierten Medizin werden große Hoffnungen in neu etablierte genetische Biomarker gesetzt, um die prognostische Lücke aus klinischen und histopathologischen Parametern bei der Therapie und Risikostratifizierung des Prostatakarzinoms zu schließen. In der vorliegenden Arbeit werden prognostische und prädiktive genetische Biomarker vorgestellt, die klinische Relevanz bei Diagnosestellung und nach einer definitiven Therapie des Prostatakarzinoms haben. Hierbei werden Grundsätze der Biomarkerforschung erläutert und die aktuelle Studienlage bezüglich des Progensa-PCA3-Tests, der TMPRSS2:ERG-Genfusion sowie des ConfirmMDx- und des Prolaris-Tests, des OncotypeDX Genomic Prostate Score und des Decipher Classifier präsentiert. Die Evidenz hat sich in den vergangenen Jahren stark verbessert. Nichtsdestotrotz besteht weiterhin ein Mangel an großen, multizentrischen und v. a. prospektiven Validierungsstudien. Darüber hinaus existieren keine komparativen Studien.

Schlüsselwörter

Prostatatumoren Biomarker Personalisierte Medizin Prädiktive Bedeutung von Tests Rezidiv 

Molecular biomarkers and prognostic factors for prostate cancer

Abstract

In the era of personalized medicine and precision oncology, innovative genetic biomarkers are of emerging interest to close the diagnostic and prognostic gap that is left by current clinicopathologic risk classifiers. The current review article summarizes evidence regarding prognostic and predictive genetic biomarkers that are currently in widespread clinical use at initial diagnosis as well as following definitive treatment of prostate cancer. We give a brief summary about basic principles of biomarker research studies and present current data for the Progensa PC3 test, TMPRSS2:ERG gene fusion, ConfirmMDx, Prolaris gene panel, OncotypeDX Genomic Prostate score, and Decipher classifier. Evidence regarding those genetic biomarkers has heavily increased recently. However, there is still a lack of large, multicentric and prospective clinical validation studies. Furthermore, comparative studies that investigate the prognostic value of various genetic biomarkers are needed.

Keywords

Prostatic neoplasms Biomarker Precision medicine Predictive value of tests Recurrence 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Kretschmer, Y. Tolkach, J. Ellinger und G. Kristiansen geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–386. doi: 10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang SY, Cowan JE, Cary KC, Chan JM, Carroll PR, Cooperberg MR (2014) Limited ability of existing nomograms to predict outcomes in men undergoing active surveillance for prostate cancer. BJU Int 114(6b):E18–24. doi: 10.1111/bju.12554 CrossRefPubMedGoogle Scholar
  3. 3.
    Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Zappa M, Nelen V et al (2014) Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet 384(9959):2027–2035. doi: 10.1016/S0140-6736(14)60525-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gordetsky J, Epstein J (2016) Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn Pathol 11:25. doi: 10.1186/s13000-016-0478-2 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038. doi: 10.1056/NEJMoa1315815 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bernemann C, Schnoeller TJ, Luedeke M, Steinestel K, Boegemann M, Schrader AJ et al (2016) Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol. doi: 10.1016/j.eururo.2016.07.021 Google Scholar
  7. 7.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM et al (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072. doi: 10.1200/JCO.2004.01.0454 CrossRefPubMedGoogle Scholar
  8. 8.
    Simon R (2010) Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Per Med 7(1):33–47. doi: 10.2217/pme.09.49 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD (2008) Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 100(20):1432–1438. doi: 10.1093/jnci/djn326 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Leapman MS, Carroll PR (2016) New genetic markers for prostate cancer. Urol Clin North Am 43(1):7–15. doi: 10.1016/j.ucl.2015.08.002 CrossRefPubMedGoogle Scholar
  11. 11.
    Fradet Y, Saad F, Aprikian A, Dessureault J, Elhilali M, Trudel C et al (2004) uPM3, a new molecular urine test for the detection of prostate cancer. Urology 64(2):311–315. doi: 10.1016/j.urology.2004.03.052 (discussion 315–316)CrossRefPubMedGoogle Scholar
  12. 12.
    Wei JT, Feng Z, Partin AW, Brown E, Thompson I, Sokoll L et al (2014) Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J Clin Oncol 32(36):4066–4072. doi: 10.1200/JCO.2013.52.8505 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de la Taille A, Irani J, Graefen M, Chun F, de Reijke T, Kil P et al (2011) Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol 185(6):2119–2125. doi: 10.1016/j.juro.2011.01.075 CrossRefPubMedGoogle Scholar
  14. 14.
    Haese A, de la Taille A, van Poppel H, Marberger M, Stenzl A, Mulders PF et al (2008) Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol 54(5):1081–1088. doi: 10.1016/j.eururo.2008.06.071 CrossRefPubMedGoogle Scholar
  15. 15.
    Ploussard G, Durand X, Xylinas E, Moutereau S, Radulescu C, Forgue A et al (2011) Prostate cancer antigen 3 score accurately predicts tumour volume and might help in selecting prostate cancer patients for active surveillance. Eur Urol 59(3):422–429. doi: 10.1016/j.eururo.2010.11.044 CrossRefPubMedGoogle Scholar
  16. 16.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648. doi: 10.1126/science.1117679 CrossRefPubMedGoogle Scholar
  17. 17.
    Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P et al (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27(3):253–263. doi: 10.1038/sj.onc.1210640 CrossRefPubMedGoogle Scholar
  18. 18.
    Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26(31):4596–4599. doi: 10.1038/sj.onc.1210237 CrossRefPubMedGoogle Scholar
  19. 19.
    Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC et al (2012) The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 21(9):1497–1509. doi: 10.1158/1055-9965.epi-12-0042 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Leyten GHJM, Hessels D, Jannink SA, Smit FP, de Jong H, Cornel EB et al (2014) Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 65(3):534–542. doi: 10.1016/j.eururo.2012.11.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP et al (2016) Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol 70(1):45–53. doi: 10.1016/j.eururo.2015.04.039 CrossRefPubMedGoogle Scholar
  22. 22.
    Tomlins SA, Groskopf J, Chinnaiyan AM (2015) Reply to Carsten Stephan, Henning Cammann, and Klaus Jung’s Letter to the Editor re: Scott A. Tomlins, John R. Day, Robert J. Lonigro, et al Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol. In press. doi:10.1016/j.eururo.2015.04.039. Eur Urol 68(5):e108. doi: 10.1016/j.eururo.2015.07.027 CrossRefPubMedGoogle Scholar
  23. 23.
    Stephan C, Cammann H, Jung K (2015) Re: Scott A. Tomlins, John R. Day, Robert J. Lonigro, et al Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol. In press. doi:10.1016/j.eururo.2015.04.039. Eur Urol 68(5):e106–107. doi: 10.1016/j.eururo.2015.07.028 CrossRefPubMedGoogle Scholar
  24. 24.
    Chan TA, Glockner S, Yi JM, Chen W, Van Neste L, Cope L et al (2008) Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PloS Med Libr Sci 5(5):e114CrossRefGoogle Scholar
  25. 25.
    Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W (2012) The epigenetic promise for prostate cancer diagnosis. Prostate 72(11):1248–1261CrossRefPubMedGoogle Scholar
  26. 26.
    Trock BJ, Brotzman MJ, Mangold LA, Bigley JW, Epstein JI, McLeod D et al (2012) Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int 110(1):56–62CrossRefPubMedGoogle Scholar
  27. 27.
    Stewart GD, Van Neste L, Delvenne P, Delree P, Delga A, McNeill SA et al (2013) Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol 189(3):1110–1116. doi: 10.1016/j.juro.2012.08.219 CrossRefPubMedGoogle Scholar
  28. 28.
    Partin AW, Van Neste L, Klein EA, Marks LS, Gee JR, Troyer DA et al (2014) Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol 192(4):1081–1087. doi: 10.1016/j.juro.2014.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Weiss G, Cottrell S, Distler J, Schatz P, Kristiansen G, Ittmann M et al (2009) DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol 181(4):1678–1685. doi: 10.1016/j.juro.2008.11.120 CrossRefPubMedGoogle Scholar
  30. 30.
    Schatz P, Dietrich D, Koenig T, Burger M, Lukas A, Fuhrmann I et al (2010) Development of a diagnostic microarray assay to assess the risk of recurrence of prostate cancer based on PITX2 DNA methylation. J Mol Diagn 12(3):345–353. doi: 10.2353/jmoldx.2010.090088 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dietrich D, Hasinger O, Banez LL, Sun L, van Leenders GJ, Wheeler TM et al (2013) Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn 15(2):270–279. doi: 10.1016/j.jmoldx.2012.11.002 CrossRefPubMedGoogle Scholar
  32. 32.
    Vasiljevic N, Ahmad AS, Carter PD, Fisher G, Berney DM, Foster CS et al (2014) DNA methylation of PITX2 predicts poor survival in men with prostate cancer. Biomark Med 8(9):1143–1150. doi: 10.2217/bmm.14.41 CrossRefPubMedGoogle Scholar
  33. 33.
    Uhl B, Gevensleben H, Tolkach Y, Sailer V, Majores M, Jung M et al (2016) PITX2 DNA Methylation as Biomarker for Individualized Risk Assessment of Prostate Cancer in Core Biopsies. J Mol Diagn. doi: 10.1016/j.jmoldx.2016.08.008 PubMedGoogle Scholar
  34. 34.
    Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6):1977–2000. doi: 10.1091/mbc.02-02-0030 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Freedland SJ, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J et al (2013) Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys 86(5):848–853. doi: 10.1016/j.ijrobp.2013.04.043 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bishoff JT, Freedland SJ, Gerber L, Tennstedt P, Reid J, Welbourn W et al (2014) Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol 192(2):409–414. doi: 10.1016/j.juro.2014.02.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Cuzick J, Stone S, Fisher G, Yang ZH, North BV, Berney DM et al (2015) Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer 113(3):382–389. doi: 10.1038/bjc.2015.223 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ross AE, D’Amico AV, Freedland SJ (2016) Which, when and why? Rational use of tissue-based molecular testing in localized prostate cancer. Prostate Cancer Prostatic Dis 19(1):1–6. doi: 10.1038/pcan.2015.31 CrossRefPubMedGoogle Scholar
  39. 39.
    Davis JW (2015) Use of genomic markers to risk stratify men with prostate cancer. Trends Urol Mens Health 6(3):36–39. doi: 10.1002/tre.461 CrossRefGoogle Scholar
  40. 40.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312. doi: 10.1200/JCO.2007.14.2364 CrossRefPubMedGoogle Scholar
  41. 41.
    Knezevic D, Goddard AD, Natraj N, Cherbavaz DB, Clark-Langone KM, Snable J et al (2013) Analytical validation of the Oncotype DX prostate cancer assay – a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 14:690. doi: 10.1186/1471-2164-14-690 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T et al (2014) A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol 66(3):550–560. doi: 10.1016/j.eururo.2014.05.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J et al (2015) A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 68(1):123–131. doi: 10.1016/j.eururo.2014.11.030 CrossRefPubMedGoogle Scholar
  44. 44.
    Nakagawa T, Kollmeyer TM, Morlan BW, Anderson SK, Bergstralh EJ, Davis BJ et al (2008) A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLOS ONE 3(5):e2318. doi: 10.1371/journal.pone.0002318 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Den RB, Feng FY, Showalter TN, Mishra MV, Trabulsi EJ, Lallas CD et al (2014) Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys 89(5):1038–1046. doi: 10.1016/j.ijrobp.2014.04.052 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ross AE, Feng FY, Ghadessi M, Erho N, Crisan A, Buerki C et al (2014) A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis 17(1):64–69CrossRefPubMedGoogle Scholar
  47. 47.
    Badani KK, Thompson DJ, Brown G, Holmes D, Kella N, Albala D et al (2015) Effect of a genomic classifier test on clinical practice decisions for patients with high-risk prostate cancer after surgery. BJU Int 115(3):419–429. doi: 10.1111/bju.12789 CrossRefPubMedGoogle Scholar
  48. 48.
    Klein EA, Haddad Z, Yousefi K, Lam LL, Wang Q, Choeurng V et al (2016) Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology 90:148–152CrossRefPubMedGoogle Scholar
  49. 49.
    Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J et al (2014) Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer 111(6):1201–1212. doi: 10.1038/bjc.2014.396 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP et al (2015) Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res 21(11):2591–2600. doi: 10.1158/1078-0432.CCR-14-2603 CrossRefPubMedGoogle Scholar
  51. 51.
    Danielsen HE, Pradhan M, Novelli M (2016) Revisiting tumour aneuploidy – the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13(5):291–304. doi: 10.1038/nrclinonc.2015.208 CrossRefPubMedGoogle Scholar
  52. 52.
    Böcking A, Tils M, Schramm M, Dietz J, Biesterfeld S (2014) DNA-cytometric grading of prostate cancer systematic review with descriptive data analysis. Pathol Discov 2(1):7. doi: 10.7243/2052-7896-2-7 CrossRefGoogle Scholar
  53. 53.
    Sebo TJ, Cheville JC, Riehle DL, Lohse CM, Pankratz VS, Myers RP et al (2001) Predicting prostate carcinoma volume and stage at radical prostatectomy by assessing needle biopsy specimens for percent surface area and cores positive for carcinoma, perineural invasion, Gleason score, DNA ploidy and proliferation, and preoperative serum prostate specific antigen: a report of 454 cases. Cancer 91(11):2196–2204CrossRefPubMedGoogle Scholar
  54. 54.
    Lorenzato M, Rey D, Durlach A, Bouttens D, Birembaut P, Staerman F (2004) DNA image cytometry on biopsies can help the detection of localized Gleason 3+3 prostate cancers. J Urol 172(4 Pt 1):1311–1313CrossRefPubMedGoogle Scholar
  55. 55.
    Isharwal S, Miller MC, Epstein JI, Mangold LA, Humphreys E, Partin AW et al (2009) DNA Ploidy as surrogate for biopsy gleason score for preoperative organ versus nonorgan-confined prostate cancer prediction. Urology 73(5):1092–1097. doi: 10.1016/j.urology.2008.09.060 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pretorius ME, Waehre H, Abeler VM, Davidson B, Vlatkovic L, Lothe RA et al (2009) Large scale genomic instability as an additive prognostic marker in early prostate cancer. Cell Oncol 31(4):251–259. doi: 10.3233/CLO-2009-0463 PubMedPubMedCentralGoogle Scholar
  57. 57.
    Tollefson MK, Karnes RJ, Kwon ED, Lohse CM, Rangel LJ, Mynderse LA et al (2014) Prostate cancer Ki-67 (MIB-1) expression, perineural invasion, and gleason score as biopsy-based predictors of prostate cancer mortality: the Mayo model. Mayo Clin Proc 89(3):308–318. doi: 10.1016/j.mayocp.2013.12.001 CrossRefPubMedGoogle Scholar
  58. 58.
    Lennartz M, Minner S, Brasch S, Wittmann H, Paterna L, Angermeier K et al (2016) The combination of DNA ploidy status and PTEN/6q15 deletions provides strong and independent prognostic information in prostate cancer. Clin Cancer Res 22(11):2802–2811. doi: 10.1158/1078-0432.CCR-15-0635 CrossRefPubMedGoogle Scholar
  59. 59.
    Wei L, Wang J, Lampert E, Schlanger S, DePriest AD, Hu Q et al (2016) Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. doi: 10.1016/j.eururo.2016.07.008 Google Scholar
  60. 60.
    Davis JW (2014) Novel commercially available genomic tests for prostate cancer: a roadmap to understanding their clinical impact. BJU Int 114(3):320–322. doi: 10.1111/bju.12695 PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • A. Kretschmer
    • 1
    Email author
  • Y. Tolkach
    • 2
  • J. Ellinger
    • 3
  • G. Kristiansen
    • 2
  1. 1.Urologische Klinik und PoliklinikKlinikum der Universität München, Ludwig-Maximilians-UniversitätMünchenDeutschland
  2. 2.Institut für PathologieUniversitätsklinikum BonnBonnDeutschland
  3. 3.Klinik und Poliklinik für Urologie und KinderurologieUniversitätsklinikum BonnBonnDeutschland

Personalised recommendations