Advertisement

Der Urologe

, Volume 54, Issue 5, pp 709–715 | Cite as

Navigierte urologische Chirurgie

Möglichkeiten und Grenzen aktueller Technik
  • T. SimpfendörferEmail author
  • G. Hatiboglu
  • B.A. Hadaschik
  • E. Wild
  • L. Maier-Hein
  • M.-C. Rassweiler
  • J. Rassweiler
  • M. Hohenfellner
  • D. Teber
Urologische Forschung

Zusammenfassung

Der Begriff navigierte Chirurgie beschreibt das Konzept der Echtzeitverarbeitung und Präsentation prä- und intraoperativer Daten unterschiedlicher Quellen mit dem Ziel, dem Operateur intraoperativ eine kognitive Unterstützung zu bieten. Zu den durch ein Navigationssystem verarbeiteten Datenquellen gehören bildgebende Methoden wie dreidimensionaler (3D-)Ultraschall, Magnetresonanztomographie (MRT), Computertomographie (CT) u. a. sowie optische, elektromagnetische oder mechanische Trackingmethoden. Nach der Informationsaufarbeitung werden diese in geeigneter Form dem Operateur präsentiert. Weit verbreitet ist eine Visualisierung mittels „virtual reality“ oder „augmented reality“. Für diverse Fachrichtungen sind unterschiedliche Navigationssysteme im Einsatz. Meist erfolgt ihre Anwendung an rigiden Strukturen (Knochen, Gehirn). Für die Navigation an Weichgeweben besteht die Notwendigkeit einer Bewegungskompensation und einer Deformationsdetektion. Zu diesem Zweck werden in der Urologie bei mehreren Anwendungsbeispielen markerbasierte Trackingverfahren eingesetzt. Häufig sind die Systeme jedoch im Entwicklungsstadium und noch nicht in der klinischen Routine angekommen.

Schlüsselwörter

Tracking „Augmented reality“ Chirurgie, computerassistierte Informationsaufarbeitung Navigationssysteme 

Navigation in urological surgery

Possibilities and limits of current techniques

Abstract

Surgical navigation describes the concept of real-time processing and presentation of preoperative and intraoperative data from different sources to intraoperatively provide surgeons with additional cognitive support. Imaging methods such as 3D ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT) and data from optical, electromagnetic or mechanical tracking methods are used. The resulting information of the navigation system will be presented by the means of visual methods. Mostly virtual reality or augmented reality visualization is used. There are different guidance systems for various disciplines introduced. Mostly it operates on rigid structures (bone, brain). For soft tissue navigation motion compensation and deformation detection are necessary. Therefore, marker-based tracking methods are used in several urological application examples; however, the systems are often still under development and have not yet arrived in the clinical routine.

Keywords

Tracking Augmented reality Navigation system Resulting information Computer assisted surgery 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt: T. Simpfendörfer, G. Hatiboglu, B.A. Hadaschik, E. Wild, L. Maier-Hein, M.-C. Rassweiler, J. Rassweiler, M. Hohenfellner und D. Teber geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Baumhauer M, Feuerstein M, Meinzer HP et al (2008) Navigation in endoscopic soft tissue surgery: perspectives and limitations. J Endourol 22(4):751–766CrossRefPubMedGoogle Scholar
  2. 2.
    Baumhauer M, Simpfendörfer T, Schwarz R et al (2007) Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization. SPIE Medical Imaging 6509(1):11–23Google Scholar
  3. 3.
    Franz AM, Haidegger T, Birkfellner W et al (2014) Electromagnetic tracking in medicine-a review of technology, validation and applications. IEEE Trans Med Imaging 33(8):1702–1725CrossRefPubMedGoogle Scholar
  4. 4.
    Furukawa J, Miyake H, Tanaka K et al (2014) Console-integrated real-time three-dimensional image overlay navigation for robot-assisted partial nephrectomy with selective arterial clamping: early single-centre experience with 17 cases. Int J Med Robot (Epub ahead of print). doi:10.1002/rcs.1574Google Scholar
  5. 5.
    Hadaschik BA, Kuru TH, Tulea C et al (2011) A novel stereotactic prostate biopsy system integrating pre-interventional magnetic resonance imaging and live ultrasound fusion. J Urol 186(6):2214–2220CrossRefPubMedGoogle Scholar
  6. 6.
    Hakime A, Barah A, Deschamps F et al (2013) Prospective comparison of freehand and electromagnetic needle tracking for US-guided percutaneous liver biopsy. J Vasc Interv Radiol 24(11):1682–1689CrossRefPubMedGoogle Scholar
  7. 7.
    Kato A, Yoshimine T, Hayakawa T et al (1991) A frameless, armless navigational system for computer-assisted neurosurgery. Technical note. J Neurosurg 74(5):845–849CrossRefPubMedGoogle Scholar
  8. 8.
    Li R, Li T, Qian X et al (2014) Real-time ultrasound-guided percutaneous nephrolithotomy using SonixGPS navigation: clinical experience and practice in a single center in China. J Endourol (Epub ahead of print). doi:10.1089/end.2014.0302Google Scholar
  9. 9.
    Maier-Hein L, Tekbas A, Seitel A et al (2008) In-vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5385–5396CrossRefPubMedGoogle Scholar
  10. 10.
    Müller M, Rassweiler MC, Klein J et al (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8(4):663–675CrossRefPubMedGoogle Scholar
  11. 11.
    Pratt P, Mayer E, Vale J et al (2012) An effective visualisation and registration system for image-guided robotic partial nephrectomy. J Robot Surg 6:23–31CrossRefGoogle Scholar
  12. 12.
    Radtke JP, Kuru TH, Boxler S et al (2014) Comparative analysis of transperineal template-saturation prostate biopsy versus MRI-targeted biopsy with MRI-US fusion-guidance. J Urol (Epub ahead of print). doi 10.1016/j.juro.2014.07.098Google Scholar
  13. 13.
    Rassweiler JJ, Müller M, Fangerau M et al (2012) iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61(3):628–631CrossRefPubMedGoogle Scholar
  14. 14.
    Simpfendörfer T, Baumhauer M, Müller M et al (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845CrossRefPubMedGoogle Scholar
  15. 15.
    Teber D, Guven S, Simpfendörfer T et al (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56(2):332–338CrossRefPubMedGoogle Scholar
  16. 16.
    Tewari AK, Shevchuk MM, Sterling J et al (2011) Multiphoton microscopy for structure identification in human prostate and periprostatic tissue: implications in prostate cancer surgery. BJU Int 108(9):1421–1429CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Tobis S, Knopf J, Silvers C et al (2011) Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 186(1):47–52CrossRefPubMedGoogle Scholar
  18. 18.
    Ukimura O, Aron M, Nakamoto M et al (2014) Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol 28(6):625–630CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. Simpfendörfer
    • 1
    Email author
  • G. Hatiboglu
    • 1
  • B.A. Hadaschik
    • 1
  • E. Wild
    • 2
  • L. Maier-Hein
    • 2
  • M.-C. Rassweiler
    • 2
  • J. Rassweiler
    • 3
  • M. Hohenfellner
    • 1
  • D. Teber
    • 1
  1. 1.Urologische Universitätsklinik HeidelbergHeidelbergDeutschland
  2. 2.Computer-assistierte InterventionenDKFZ HeidelbergHeidelbergDeutschland
  3. 3.Urologische KlinikSLK-Kliniken, Universität HeidelbergHeilbronnDeutschland

Personalised recommendations