Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bildgebung zur Diagnostik der Urolithiasis einschließlich Dual-Energy-CT

Imaging for diagnostics of urolithiasis including dual-energy CT

Zusammenfassung

Patienten mit einer Steinerkrankung stellen sich in der Regel mit kolikartigen Schmerzen vor. Vor Einleitung einer Therapie ist zur sicheren Diagnosestellung eine weiterführende Bildgebung erforderlich. Hierfür stehen die Sonographie, die konventionelle Röntgenabdomenaufnahme, das Ausscheidungsurogramm, die native Computertomographie (CT), die CT- und MR-Urographie und die Dual-Energy-CT zur Verfügung. Alle unterscheiden sich in der Verfügbarkeit, in der diagnostischen Sensitivität und Spezifität und in der Strahlenbelastung für den Patienten. Mit der Dual-Energy-CT wurde ein Verfahren entwickelt, das im Gegensatz zu den konventionellen die Steinzusammensetzung mit hoher Sicherheit unterscheiden und so die Therapie beeinflussen kann. In diesem Leitthemenbeitrag zur Bildgebung der Urolithiasis werden die einzelnen bildgebenden Verfahren vorgestellt und insbesondere das Dual-Energy-CT näher erläutert.

Abstract

Patients with stone disease usually present to the urologist with acute colic pain. For the right choice of therapy the diagnosis needs to be confirmed using one of many imaging methods, including ultrasonography, abdominal radiography, intravenous urography, non-contrast-enhanced computed tomography (CT), CT and magnetic resonance imaging (MRI) urography and dual-energy CT. The techniques differ in the availability, diagnostic sensitivity and specificity and level of radiation exposure. Compared to the others dual-energy CT allows distinction between different stone compositions with high accuracy and can affect the choice of therapy. This article on imaging and diagnosis of urolithiasis discusses the different imaging methods and highlights dual-energy CT and its distinctive features.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Varma G, Nair N, Salim A et al (2009) Investigations for recognizing urinary stone. Urol Res 37(6):349–352

  2. 2.

    Heidenreich A, Desgrandschamps F, Terrier F (2002) Modern approach of diagnosis and management of acute flank pain: review of all imaging modalities. Eur Urol 41(4):351–362

  3. 3.

    Kennish SJ, Bhatnagar P, Wah TM et al (2008) Is the KUB radiograph redundant for investigating acute ureteric colic in the non-contrast enhanced computed tomography era? Clin Radiol 63(10):1131–1135

  4. 4.

    Knoll T (2009) S2 guidelines on diagnostic, therapy and metaphylaxis of urolithiasis: Part 1: Diagnostic and therapy. Urologe A 48(8):917–924

  5. 5.

    Amis ES Jr (1999) Epitaph for the urogram. Radiology 213(3):639–640

  6. 6.

    Türk C, Knoll T, Petrik et al (2012) Guidelines on Urolithiasis. European Association of Urology, Arnheim, The Netherlands, http://www.uroweb.org

  7. 7.

    Jellison FC, Smith JC, Heldt JP et al (2009) Effect of low dose radiation computerized tomography protocols on distal ureteral calculus detection. J Urol 182(6):2762–2767

  8. 8.

    Poletti PA, Platon A, Rutschmann OT et al (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188(4):927–933

  9. 9.

    Stumpp P, Gosch D, Kühn A et al (2012) Performance of an automatic dose control system for CT: patient studies. Rofo 183(1):60–67

  10. 10.

    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

  11. 11.

    Graser A, Johnson TR, Hecht EM et al (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19(1):13–23

  12. 12.

    Schenzle JC, Sommer WH, Neumaier K et al (2010) Dual energy CT of the chest: how about the dose? Invest Radiol 45(6):347–353

  13. 13.

    Thieme SF, Graute V, Nikolaou K et al (2012) Dual energy CT lung perfusion imaging–correlation with SPECT/CT. Eur J Radiol 81(2):360–365

  14. 14.

    Thieme SF, Hoegl S, Nikolaou K et al (2010) Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol 20(12):2882–2889

  15. 15.

    Thieme SF, Hoegl S, Nikolaou K et al (2010) Dual-energy lung perfusion computed tomography: a novel pulmonary functional imaging method. Semin Ultrasound CT MR 31(4):301–308

  16. 16.

    Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

  17. 17.

    Graser A, Zech CJ, Stief CG et al (2009) Imaging renal cell carcinoma. Urologe A 48(4):427–438

  18. 18.

    Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252(2):433–440

  19. 19.

    Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45(7):399–405

  20. 20.

    Primak AN (2010) Abdominal imaging: kidney stone differentation in dual energy ct in clinical practice. Springer, Berlin Heidelberg New York, pp 177–192

  21. 21.

    Johnson TR (2012) Dual-energy CT: general principles. AJR Am J Roentgenol 199(5 Suppl):3–8

  22. 22.

    Ascenti G, Siragusa C, Racchiusa S et al (2010) Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. AJR Am J Roentgenol 195(4):953–958

  23. 23.

    Thomas C, Heuschmid M, Schilling D et al (2010) Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology 257(2):402–409

  24. 24.

    Stolzmann P, Kozomara M, Chuck N et al (2008) Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36(3–4):133–138

  25. 25.

    Primak AN, Fletcher JG, Vrtiska TJ et al (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447

  26. 26.

    Grosjean R, Sauer B, Guerra RM et al (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR Am J Roentgenol 190(3):720–728

  27. 27.

    Graser A, Johnson TR, Staelher M et al (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43(2):112–119

  28. 28.

    Boll DT, Patil NA, Paulson EK et al (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition – pilot study. Radiology 250(3):813–820

  29. 29.

    Matlaga BR, Kawamoto S, Fishman E (2008) Dual source computed tomography: a novel technique to determine stone composition. Urology 72(5):1164–1168

  30. 30.

    Stolzmann P, Kozomara M, Chuck N et al (2010) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging 35(5):629–635

  31. 31.

    Thomas C, Patschan O, Ketelsen D et al (2009) Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 19(6):1553–1559

  32. 32.

    Hidas G, Eliahou R, Duvdevani M et al (2010) Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology 257(2):394–401

  33. 33.

    Takahashi N, Vrtiska TJ, Kawashima A et al (2010) Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology 256(1):184–190

  34. 34.

    Thomas C, Krauss B, Ketelsen D et al (2010) Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration. Invest Radiol 45(7):393–398

  35. 35.

    Mangold S, Thomas C, Fenchel M et al (2012) Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology 264(1):119–125

  36. 36.

    Qu M, Ramirez-Giraldo JC, Leng S et al (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol 196(6):1279–1287

  37. 37.

    Fung GS, Kawamoto S, Matlaga BR et al (2012) Differentiation of kidney stones using dual-energy CT with and without a tin filter. AJR Am J Roentgenol 198(6):1380–1386

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: TJ hält Patente zum DECT. TJ u. AG erhalten Honorare für Vorträge u. Workshops von Siemens. Das Institut für Klinische Radiologie, Klinikum der Universität München besitzt einen Kooperationsvertrag mit Siemens, durch den eine Nachverarbeitungs-Workstation und Software-Lizenzen für DECT-Studien zur Verfügung gestellt werden.

Author information

Correspondence to Dr. F. Strittmatter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strittmatter, F., Gratzke, C., Graser, A. et al. Bildgebung zur Diagnostik der Urolithiasis einschließlich Dual-Energy-CT. Urologe 52, 541–545 (2013). https://doi.org/10.1007/s00120-012-3101-5

Download citation

Schlüsselwörter

  • Steinerkrankung
  • Steinzusammensetzung
  • Notfallpatienten
  • Harnleitersteine

Keywords

  • Calculi
  • Stone composition
  • Emergency patients
  • Ureteral calculi