Der Urologe

, Volume 52, Issue 4, pp 497–503 | Cite as

Bildgebende Diagnostik des fortgeschrittenen Prostatakarzinoms

  • A. Kretschmer
  • M. Seitz
  • A. Graser
  • C.G. Stief
  • D. Tilki
Leitthema

Zusammenfassung

Die Diagnostik des Prostatakarzinoms stellt den behandelnden Urologen nach wie vor vor große Herausforderungen. Im Hinblick auf eine individualisierte und risikostratifizierte Evaluation unterschiedlicher Therapieoptionen ist eine exakte Diagnostik jedoch zur bestmöglichen Unterscheidung zwischen lokal begrenztem und fortgeschrittenem Prostatakarzinom unerlässlich. Die Bildgebung des fortgeschrittenen Prostatakarzinoms befindet sich aktuell aufgrund zahlreicher technischer Innovationen im Wandel. Während sich die cholinbasierte Hybrid-Positronenemissionstomographie/Computertomographie (-PET/CT) als neuer diagnostischer Parameter im Rahmen der Bildgebung des fortgeschrittenen Prostatakarzinoms im klinischen Alltag durchgesetzt hat, besitzen etablierte Methoden wie Magnetresonanztomographie (MRT) oder Knochenszintigraphie durch technische Weiterentwicklungen weiterhin großes diagnostisches Potenzial. Der gezielte Einsatz der Bildgebung beim fortgeschrittenen Prostatakarzinom kann helfen, eine auf den Patienten maßgeschneiderte onkologische Therapie anzubieten. Inwiefern hierdurch die Prognose des Patienten verbessert werden kann, ist Stand aktueller Forschung.

Schlüsselwörter

Staging Rezidiv Magnetresonanztomographie Positronenemissionstomographie Knochenszintigraphie 

Imaging diagnostics of advanced prostate cancer

Abstract

The diagnostic approach to prostate cancer is still a big challenge for the treating physician. Regarding an individualized and risk-adapted evaluation of different therapeutic options, precise diagnostic tools are crucial to accurately distinguish between localized and advanced prostate cancer. Imaging of advanced prostate cancer is currently changing due to numerous technical innovations. While choline-based hybrid positron emission tomography-computed tomography (PET/CT) has been established as an important diagnostic tool in clinical imaging of advanced prostate cancer, well-investigated methods, such as magnetic resonance imaging (MRI) and bone scintigraphy are currently expanding the diagnostic potential due to technical improvements. The specific use of imaging for advanced prostate cancer may help to offer the patient a well-tailored oncologic therapy. Further research is needed to evaluate whether this individualized therapy can consistently improve the prognosis of patients suffering from advanced prostate cancer.

Keywords

Staging Recividism Magnetic resonance tomography Positron emission tomography Bone scintigraphy 

Literatur

  1. 1.
    Robert Koch-Institut und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (Hrsg) (2012) Krebs in Deutschland 2007/2008. RKI, Berlin, S 80–84Google Scholar
  2. 2.
    Guillonneau BD, Fizazi K (2011) Natural history of patients presenting biochemical recurrence after radical prostatectomy: some good news? Eur Urol 59(6):900–901PubMedCrossRefGoogle Scholar
  3. 3.
    Mullins JK, Han M, Pierorazio PM et al (2012) Radical prostatectomy outcome in men 65 years old or older with low risk prostate cancer. J Urol 187(5):1620–1625PubMedCrossRefGoogle Scholar
  4. 4.
    Swanson GP, Thompson IM, Basler J (2006) Current status of lymph node-positive prostate cancer: incidence and predictors of outcome. Cancer 107(3):439–450PubMedCrossRefGoogle Scholar
  5. 5.
    Campbell SC, Klein EA, Levin HS et al (1995) Open pelvic lymph node dissection for prostate cancer: a reassessment. Urology 46(3):352–355PubMedCrossRefGoogle Scholar
  6. 6.
    Danella JF, deKernion JB, Smith RB et al (1993) The contemporary incidence of lymph node metastases in prostate cancer: implications for laparoscopic lymph node dissection. J Urol 149(6):1488–1491PubMedGoogle Scholar
  7. 7.
    Heidenreich A, Bellmunt J, Bolla M et al (2010) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59(1):61–71PubMedCrossRefGoogle Scholar
  8. 8.
    Turkbey B, Albert PS, Kurdziel K et al (2009) Imaging localized prostate cancer: current approaches and new developments. AJR Am J Roentgenol 192(6):1471–1480PubMedCrossRefGoogle Scholar
  9. 9.
    Amis ES Jr, Bigongiari LR, Bluth EI et al (2000) Pretreatment staging of clinically localized prostate cancer. American College of Radiology. ACR Appropriateness Criteria. Radiology 215(Suppl):703–708PubMedGoogle Scholar
  10. 10.
    Hovels AM, Heesakkers RA, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63(4):387–395PubMedCrossRefGoogle Scholar
  11. 11.
    Pouliot F, Johnson M, Wu L (2009) Non-invasive molecular imaging of prostate cancer lymph node metastasis. Trends Mol Med 15(6):254–262PubMedCrossRefGoogle Scholar
  12. 12.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499PubMedCrossRefGoogle Scholar
  13. 13.
    Heesakkers RA, Hövels AM, Jager GJ et al (2008) MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 9(9):850–856PubMedCrossRefGoogle Scholar
  14. 14.
    Pinto F, Totaro A, Palermo G et al (2012) Imaging in prostate cancer staging: present role and future perspectives. Urol Int 88(2):125–136PubMedCrossRefGoogle Scholar
  15. 15.
    Seitz M, Stief CG, Reich O et al (2010) Diagnostic work-up for lymph node metastases of urological tumors. Urologe A 49(3):356–363PubMedCrossRefGoogle Scholar
  16. 16.
    Eiber M, Beer AJ, Holzapfel K et al (2010) Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol 45(1):15–23PubMedCrossRefGoogle Scholar
  17. 17.
    Budiharto T, Joniau S, Lerut E et al (2011) Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol 60(1):125–130PubMedCrossRefGoogle Scholar
  18. 18.
    Giannarini G, Petralia G, Thoeny HC (2011) Potential and limitations of diffusion-weighted magnetic resonance imaging in kidney, prostate, and bladder cancer including pelvic lymph node staging: a critical analysis of the literature. Eur Urol 61(2):326–340PubMedCrossRefGoogle Scholar
  19. 19.
    Zeisel SH (1981) Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1:95–121PubMedCrossRefGoogle Scholar
  20. 20.
    Sutinen E, Nurmi M, Roivainen A et al (2004) Kinetics of ((11)C) choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31(3):317–324PubMedCrossRefGoogle Scholar
  21. 21.
    Ackerstaff E, Pflug BR, Nelson JB et al (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61(9):3599–3603PubMedGoogle Scholar
  22. 22.
    Jong IJ de, Pruim J, Elsinga PH et al (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42(1):18–23PubMedCrossRefGoogle Scholar
  23. 23.
    Jong IJ de, Pruim J, Elsinga PH et al (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44(3):331–335PubMedGoogle Scholar
  24. 24.
    Schiavina R, Scattoni V, Castellucci P et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401PubMedCrossRefGoogle Scholar
  25. 25.
    Hacker A, Jeschke S, Leeb K et al (2006) Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of (18F) fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 176(5):2014–2019PubMedCrossRefGoogle Scholar
  26. 26.
    Scher B, Seitz M (2008) PET/CT imaging of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 35(1):5–8PubMedCrossRefGoogle Scholar
  27. 27.
    Jadvar H (2011) Colonic FDG uptake pattern in subjects receiving oral contrast with no known or suspected colonic disease. Clin Nucl Med 36(9):754–756PubMedCrossRefGoogle Scholar
  28. 28.
    Ravizzini G, Turkbey B, Kurdziel K et al (2009) New horizons in prostate cancer imaging. Eur J Radiol 70(2):212–226PubMedCrossRefGoogle Scholar
  29. 29.
    Tilki D, Reich O, Graser A et al (2012) 18F-Fluoroethylcholine PET/CT identifies lymph node metastasis in patients with prostate-specific antigen failure after radical prostatectomy but underestimates its extent. Eur Urol 57(23):8041–8059Google Scholar
  30. 30.
    Poulsen MH, Bouchelouche K, Gerke O et al (2010) [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. BJU Int 106(5):639–644PubMedCrossRefGoogle Scholar
  31. 31.
    Thurairaja R, McFarlane J, Traill Z et al (2004) State-of-the-art approaches to detecting early bone metastasis in prostate cancer. BJU Int 94(3):268–271PubMedCrossRefGoogle Scholar
  32. 32.
    Taoka T, Mayr NA, Lee HJ et al (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol 176(6):1525–1530PubMedCrossRefGoogle Scholar
  33. 33.
    Messiou C, Cook G, deSouza NM (2009) Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 101(8):1225–1232PubMedCrossRefGoogle Scholar
  34. 34.
    Pollen JJ, Witztum KF, Ashburn WL (1984) The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol 142(4):773–776PubMedCrossRefGoogle Scholar
  35. 35.
    Nozaki T, Yasuda K, Akashi T et al (2008) Usefulness of single photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol 15(6):516–519PubMedCrossRefGoogle Scholar
  36. 36.
    Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297PubMedGoogle Scholar
  37. 37.
    Link TM, Sciuk J, Fründt H et al (1995) Spinal metastases. Value of diagnostic procedures in the initial diagnosis and follow-up. Radiologe 35(1):21–27PubMedGoogle Scholar
  38. 38.
    Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25(22):3281–3287PubMedCrossRefGoogle Scholar
  39. 39.
    Algra PR, Bloem JL, Tissing H et al (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11(2):219–232PubMedGoogle Scholar
  40. 40.
    Gutzeit A, Doert A, Froehlich JM et al (2010) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39(4):333–343PubMedCrossRefGoogle Scholar
  41. 41.
    Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps – initial observations. Radiology 257(2):523–531PubMedCrossRefGoogle Scholar
  42. 42.
    Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, „Onko-PET III“, 21 July and 19 September 2000. Eur J Nucl Med 28(11):1707–1723PubMedCrossRefGoogle Scholar
  43. 43.
    Hofer C, Laubenbacher C, Block T et al (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36(1):31–35PubMedCrossRefGoogle Scholar
  44. 44.
    Akin O, Hricak H (2007) Imaging of prostate cancer. Radiol Clin North Am 45(1):207–222PubMedCrossRefGoogle Scholar
  45. 45.
    Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34(4):274–292PubMedCrossRefGoogle Scholar
  46. 46.
    Seitz M, Shukla-Dave A, Bjartell A et al (2004) Was leistet die Skelettszintigraphie beim Staging des Prostatakarzinoms: Ein Vergleich mit der 11C-Cholin-PET/CT und der 18F-Flourid-PET. Urologe A 234(Suppl 1)Google Scholar
  47. 47.
    Fuccio C, Castellucci P, Schiavina R et al (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24(6):485–492PubMedCrossRefGoogle Scholar
  48. 48.
    Boorjian SA, Thompson RH, Tollefson MK et al (2011) Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol 59(6):893–899PubMedCrossRefGoogle Scholar
  49. 49.
    Simmons MN, Stephenson AJ, Klein EA (2007) Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary therapy. Eur Urol 51(5):1175–1184PubMedCrossRefGoogle Scholar
  50. 50.
    Sivalingam S, Oxley J, Probert JL et al (2007) Role of pelvic lymphadenectomy in prostate cancer management. Urology 69(2):203–209PubMedCrossRefGoogle Scholar
  51. 51.
    Bott SR (2004) Management of recurrent disease after radical prostatectomy. Prostate Cancer Prostatic Dis 7(3):211–216PubMedCrossRefGoogle Scholar
  52. 52.
    Krämer S, Görich J, Gottfried HW et al (1997) Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy. Br J Radiol 70(838):995–999PubMedGoogle Scholar
  53. 53.
    Sella T, Schwartz LH, Swindle PW et al (2004) Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231(2):379–385PubMedCrossRefGoogle Scholar
  54. 54.
    Silverman JM, Krebs TL (1997) MR imaging evaluation with a transrectal surface coil of local recurrence of prostatic cancer in men who have undergone radical prostatectomy. AJR Am J Roentgenol 168(2):379–385PubMedCrossRefGoogle Scholar
  55. 55.
    Sciarra A, Panebianco V, Salciccia S et al (2008) Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol 54(3):589–600PubMedCrossRefGoogle Scholar
  56. 56.
    Coakley FV, Teh HS, Qayyum A et al (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233(2):441–448PubMedCrossRefGoogle Scholar
  57. 57.
    Rinnab L, Mottaghy FM, Blumstein NM et al (2007) Evaluation of (11C)-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int 100(4):786–793PubMedCrossRefGoogle Scholar
  58. 58.
    Krause BJ, Souvatzoglou M, Tuncel M et al (2008) The detection rate of (11C) choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35(1):18–23PubMedCrossRefGoogle Scholar
  59. 59.
    Castellucci P, Fuccio C, Nanni C et al (2009) Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 50(9):1394–1400PubMedCrossRefGoogle Scholar
  60. 60.
    Krause BJ, Souvatzoglou M, Treiber U (2011) Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol (Epub ahead of print)Google Scholar
  61. 61.
    Pandit-Taskar N, O’Donoghue JA, Morris MJ et al (2008) Antibody mass escalation study in patients with castration-resistant prostate cancer using 111In-J591: lesion detectability and dosimetric projections for 90Y radioimmunotherapy. J Nucl Med 49(7):1066–1074PubMedCrossRefGoogle Scholar
  62. 62.
    Milowsky MI, Nanus DM, Kostakoglu L et al (2004) Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 22(13):2522–2531PubMedCrossRefGoogle Scholar
  63. 63.
    Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35:253–263PubMedCrossRefGoogle Scholar
  64. 64.
    Graute V, Jansen N, Ubleis C et al. (2012) Relationship between PSA kinetics and [18F]fluorocholine PET/CT detection rates of recurrence in patients with prostate cancer after total prostatectomy. Eur J Nucl Med Mol Imaging 39:271–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Kretschmer
    • 1
  • M. Seitz
    • 2
  • A. Graser
    • 3
  • C.G. Stief
    • 1
  • D. Tilki
    • 1
    • 4
  1. 1.Urologische Klinik und PoliklinikLudwig-Maximilians-Universität MünchenMünchenDeutschland
  2. 2.Uroclinic BogenhausenMünchenDeutschland
  3. 3.Institut für Klinische RadiologieLudwig-Maximilians-Universität MünchenMünchenDeutschland
  4. 4.Department of UrologyUniversity of California, Davis, Medical CenterSacramentoUSA

Personalised recommendations