Der Urologe

, Volume 51, Issue 12, pp 1728–1734 | Cite as

Irreversible Elektroporation

Die neue Generation lokaler Ablationsverfahren beim Nierenzellkarzinom
  • U.-B. Liehr
  • J.J. Wendler
  • S. Blaschke
  • M. Porsch
  • A. Janitzky
  • D. Baumunk
  • M. Pech
  • F. Fischbach
  • D. Schindele
  • C. Grube
  • J. Ricke
  • M. Schostak
Originalien

Zusammenfassung

Hintergrund

Lokale Ablationsverfahren stehen in der Onkologie im Fokus aktueller Entwicklungen. Vorrangiges Ziel ist es, ohne Kompromittieren der onkologischen Ergebnisse, Organe und Organfunktionen zu erhalten.

Methode

Die irreversible Elektroporation (IRE) ist ein neues Ablationsverfahren und beruht auf einer induzierten Zellapoptose nach Applikation von Starkstromimpulsen ohne thermische Schädigung des Zielgewebes und benachbarter Strukturen.

Ziel

2005 erstmals publiziert, wird die IRE aktuell in einigen onkologischen Fachgebieten präklinischen und klinischen Untersuchungen unterzogen, die Ergebnisse sind bisher vielversprechend. Die IRE könnte eine deutliche Entwicklung in der Ablationstherapie beim Nierenzellkarzinom (NZK) bedeuten, der entscheidende Wirknachweis für das lokale NZK steht jedoch bisher aus. In dieser Arbeit werden eigene präklinische und erste klinische Untersuchungen und Ergebnisse dargestellt, diskutiert und mit anderen Ablationstechniken verglichen, um die aktuelle Wertigkeit der IRE aufzuzeigen.

Schlüsselwörter

Elektroporation, irreversible Nierenzellkarzinom  Ablationsverfahren, lokale Funktionserhalt Zellapoptose, induzierte 

Irreversible electroporation

The new generation of local ablation techniques for renal cell carcinoma

Abstract

Background

Local ablation techniques are a major focus of current developments in oncology. The primary aim is to retain organs and preserve organ functions without compromising the oncological outcome.

Method

Irreversible electroporation (IRE) is a novel ablation technique that involves the application of high-voltage pulses to induce cell apoptosis without causing thermal damage to the target tissue or adjacent structures.

Aim

First published in 2005 IRE is currently undergoing preclinical and clinical trials in several areas of oncology and the initial results have been promising. The IRE technique could be a significant development in ablation treatment for renal cell carcinoma (RCC) but decisive proof of its effectiveness for local RCC has not yet been provided. This study presents the results of preclinical and initial clinical trials which are discussed and compared with those of other ablation techniques in order to demonstrate the current value of IRE.

Keywords

Electroporation, irreversible Renal cell carcinoma Ablation, local Function retention Apoptosis, induced 

Literatur

  1. 1.
    Ljundberg B, Cowan N, Hanbury DC et al (2010) Guidelines on renal cell carcinoma. European Association of Urology (eau) 2010, update version April 2010. Eur Urol 58(3):398–406CrossRefGoogle Scholar
  2. 2.
    Lu DS, Raman SS, Vodopich DJ et al (2002) Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the „heat sink“ effect. Am J Roentgenol 178(1):47–51Google Scholar
  3. 3.
    Ladd AP, Rescorla FJ, Baust JG et al (1999) Cryosurgical effects on growing vessels. Am Surg 65(7):677–682PubMedGoogle Scholar
  4. 4.
    Dib RE, Touma NJ, Kapoor A (2009) Review of the efficacy and safety of radiofrequency ablation for the treatment of small renal masses. Can Urol Assoc J 3(2):143–149PubMedGoogle Scholar
  5. 5.
    Duffey BG, Kyle Anderson J (2010) Current and future technology for minimally invasive ablation of renal cell carcinoma. Indian J Urol 26(3):410–417PubMedCrossRefGoogle Scholar
  6. 6.
    Bischoff JT, Chen RB, Lee BR et al (1999) Laparoscopic renal cryoablation: acute and long-term clinical radiographic, and pathologic effects in an animal model and application in a clinical trial. J Endourol 13:233–239CrossRefGoogle Scholar
  7. 7.
    Berger A, Kamoi K, Gill IS, Aron M (2009) Cryoablation for renal tumors: current status. Curr Opin Urol 19(2):138–142PubMedCrossRefGoogle Scholar
  8. 8.
    Carrafiello G, Mangini M, Fontana F et al (2010) Single-antenna microwave ablation under contrast-enhanced ultrasound guidance for treatment of small renal cell carcinoma: preliminary experience. Cardiovasc Intervent Radiol 33(2):367–374PubMedCrossRefGoogle Scholar
  9. 9.
    Brace CL (2009) Microwave ablation technology: what every user should know. Curr Probl Diagn Radiol 38(2):61–67PubMedCrossRefGoogle Scholar
  10. 10.
    Klatte T, Marberger M (2009) High-intensity focused ultrasound for the treatment of renal masses: current status and future potential. Curr Opin Urol 19(2):188–191PubMedCrossRefGoogle Scholar
  11. 11.
    Dick EA, Joarder R, De Jode MG et al (2002) Magnetic resonance imaging-guided laser thermal ablation of renal tumours. BJU Int 90(9):814–822PubMedCrossRefGoogle Scholar
  12. 12.
    Kieran K, Hall TL, Parsons JE et al (2007) Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney. J Urol 178:672–676PubMedCrossRefGoogle Scholar
  13. 13.
    Lang EK, Sullivan J (1988) Management of primary and metastatic renal cell carcinoma by transcatheter embolization with iodine 125. Cancer 62(2):274–282PubMedCrossRefGoogle Scholar
  14. 14.
    MacKie S, Silva S de, Aslan P et al (2011) Super selective radio embolization of the porcine kidney with 90yttrium resin microspheres: a feasibility, safety and dose ranging study. J Urol 185(1):285–290PubMedCrossRefGoogle Scholar
  15. 15.
    Tsuchiya K, Uchida T, Kobayashi M et al (2000) Tumor-targeted chemotherapy with SMANCS in lipiodol for renal cell carcinoma:longer survival with larger size tumors. Urology 55(4):495–500PubMedCrossRefGoogle Scholar
  16. 16.
    Weersink RA, Forbes J, Bisland S et al (2005) Assessment of cutaneous photosensitivity of TOOKAD (WST09) in preclinical animal models and in patients. Photochem Photobiol 81(1):106–113PubMedCrossRefGoogle Scholar
  17. 17.
    Davalos RV, Mir IL, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33(2):223–231PubMedCrossRefGoogle Scholar
  18. 18.
    Lee EW, Wong D, Prikhodko SV et al (2012) Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. J Vasc Interv Radiol 23(1):107–113PubMedCrossRefGoogle Scholar
  19. 19.
    Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat 6(1):37–48PubMedGoogle Scholar
  20. 20.
    Pech M, Janitzky A, Wendler JJ et al (2012) Irreversible electroporation of renal cell carcinoma: a first-in-man phase i clinical study. Cardiovasc Intervent Radiol 35(4):921–926PubMedCrossRefGoogle Scholar
  21. 21.
    Häcker A, Chauhan S, Peters K et al (2005) Multiple high-intensity focused ultrasound probes for kidney-tissue ablation. J Endourol 19(8):1036–1040PubMedCrossRefGoogle Scholar
  22. 22.
    Sersa G, Jarm T, Kotnik T et al (2008) Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 98(2):388–398PubMedCrossRefGoogle Scholar
  23. 23.
    Lee EW, Loh CT, Kee ST (2007) Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat 6(4):287–294PubMedGoogle Scholar
  24. 24.
    Wendler JJ, Pech M, Blaschke S et al (2012) Angiography in the isolated perfused kidney: radiological evaluation of vascular protection in tissue ablation by nonthermal irreversible electroporation. Cardiovasc Intervent Radiol 35(2):383–390PubMedCrossRefGoogle Scholar
  25. 25.
    Wendler JJ, Porsch M, Hühne S et al (2012) Short- and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc Intervent Radiol (Epub ahead of print)Google Scholar
  26. 26.
    Aaronson NK et al (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85(5):365–76PubMedCrossRefGoogle Scholar
  27. 27.
    Wendler JJ, Pech M, Porsch M et al (2012) Urinary tract effects after multifocal nonthermal irreversible electroporation of the kidney: acute and chronic monitoring by magnetic resonance imaging, intravenous urography and urinary cytology. Cardiovasc Intervent Radiol 35(4):921–926PubMedCrossRefGoogle Scholar
  28. 28.
    Vadim V, Fedorov VV, Nikolski VP, Efimov R (2008) Effect of electroporation on cardiac electrophysiology. In: Shulin Li (ed) Electroporation protocols – preclinical and clinical gene medicine, 1. edn. Humana Press, New York, pp 433–448Google Scholar
  29. 29.
    Mali B, Jarm T, Corovic S et al (2008) The effect of electroporation pulses on functioning of the heart. Med Biol Eng Comput 46(8):745–757PubMedCrossRefGoogle Scholar
  30. 30.
    Arena C, Sano MB, Rossmeisl JH Jr et al (2011) High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle Contraction. Bio Med Eng 10:102Google Scholar
  31. 31.
    Ball C, Thomson KR, Kavnoudias H (2010) Irreversible electroporation: a new challenge in „out of operating theater“ anesthesia. Anesth Analg 110(5):1305–1309PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • U.-B. Liehr
    • 1
  • J.J. Wendler
    • 1
  • S. Blaschke
    • 1
  • M. Porsch
    • 1
  • A. Janitzky
    • 1
  • D. Baumunk
    • 1
  • M. Pech
    • 2
  • F. Fischbach
    • 2
  • D. Schindele
    • 1
  • C. Grube
    • 1
  • J. Ricke
    • 2
  • M. Schostak
    • 1
  1. 1.Klinik für Urologie und KinderurologieUniversitätsklinikum Magdeburg A.ö.R.MagdeburgDeutschland
  2. 2.Klinik für Radiologie und NuklearmedizinUniversitätsklinikum Magdeburg A.ö.R.MagdeburgDeutschland

Personalised recommendations