Der Urologe

, Volume 47, Issue 7, pp 846–852 | Cite as

Die Detektion von Papillomavirus-DNA in der Prostata

Ein Virus mit unterschätzter klinischer Relevanz?
  • M. May
  • R. Kalisch
  • B. Hoschke
  • T. Juretzek
  • F. Wagenlehner
  • S. Brookman-Amissah
  • I. Spivak
  • K.-P. Braun
  • W. Bär
  • C. Helke
Originalien

Zusammenfassung

Hintergrund

Humane Papillomaviren (HPV) sind die am häufigsten sexuell übertragenen Krankheitserreger. Sie werden mit der steigenden Inzidenz verschiedener anogenitaler Tumoren in Zusammenhang gebracht. Die Präsenz von HPV in der Prostata und der Stellenwert des Virus in der Karzinogenese des Prostatakarzinoms (PCA) sind Gegenstand kontroverser Diskussionen. Den Hintergrund der Untersuchung bildet die Frage, ob eine Assoziation zwischen dem Nachweis von intraprostatischen HPV und dem PCA besteht.

Material und Methode

Die Daten von 213 konsekutiven Patienten wurden ausgewertet (mittleres Alter: 65,7±8,4 Jahre), bei denen im Rahmen der transrektalen ultraschallgestützten Multibiopsie der Prostata ein zusätzlicher Stanzzylinder mittels PCR auf Bakterien-, Pilze- und Viren-DNA (unter Einschluss von HPV) mit anschließender Sequenzierung untersucht wurde. Die so erhobenen Daten wurden neben dem histologischen Ergebnis mit diversen klinischen Parametern korreliert. Mit dem binären logistischen Regressionsmodell wurde der Einfluss der vorliegenden Erreger auf die Existenz des PCA geprüft.

Ergebnisse

Der Nachweis von allgemeiner Bakterien-DNA (16S rDNA) gelang nicht. 145 der 213 Patienten (68,1%) wiesen HPV-DNA in der PCR auf. In 64% (n=137) wurde High-risk-HPV-DNA beschrieben, bei jeweils 18% waren es die HPV-Genotypen 16 und 18. In unserer Untersuchung bestand kein signifikant positives Verhältnis zwischen dem HPV-Nachweis und einem histologisch verifizierten PCA, das bei 23,5% der Patienten (n=50) gefunden wurde (Odds-Ratio=1,45; 95%-Konfidenzintervall=0,71–2,91). Der BK-Virus war in keinem der Stanzzylinder durch die PCR nachweisbar.

Schlussfolgerungen

Trotz fehlender positiver Korrelation zwischen HPV-DNA und PCA in der vorliegenden Untersuchung weisen Daten aus der Literatur auf einen Einfluss der Papillomaviren auf die Karzinogenese des PCA hin. Zukünftige Studien müssen klären, inwieweit die HPV-DNA in das Erbgut der Prostatazellen eingebaut wird und dann über einzelne Gene in der Lage ist, eine maligne Transformation zu bewirken.

Schlüsselwörter

Prostata Real-time-PCR Prostatakarzinom Humane Papillomaviren HPV 

Detection of papillomavirus DNA in the prostate

A virus with underestimated clinical relevance?

Abstract

Background

Human papillomaviruses (HPV) are the most frequent pathogens of sexually transmitted diseases. They have been associated with an increased incidence of several anogenital tumors. Whether oncogenic HPV are involved in the pathogenesis of prostate cancer has been a subject of great controversy. This study’s purpose was to investigate the association between HPV infection and prostate cancer (PCA).

Material and methods

The study included 213 consecutive patients with an average age of 65.7 (±8.4) years. Within the framework of transrectal, ultrasonic-guided multibiopsy of the prostate, one additional core was examined by means of polymerase chain reaction (PCR) in relation to bacterial, fungal, and viral (including HPV) DNA, with subsequent DNA sequencing. The collected data were correlated with the histological results and with diverse clinical variables. The influence of several predictors for the existence of PCA was verified with a logistic regression model.

Results

No general bacterial DNA (16S rDNA) was detected. Of the 213 patients, 145 (68.1%) showed HPV DNA. In 64% (n=137), high-risk HPV DNA were depicted; these were 18% of the total in each case of HPV genotypes 16 and 18. From our examinations, no significant positive correlation existed between the HPV evidence and the histologically verified PCA that was found in 23.5% of the patients (n=50; odds ratio 1.45; 95% confidence interval 0.71–2.91). The BK virus was not found in any of the cores confirmed through PCR.

Conclusion

Although no positive correlation between HPV infection and PCA existed in our study, data from the literature suggest an influence of the papillomavirus on PCA oncogenesis. Future studies should highlight to what extent HPV DNA is inserted in the genome of prostate cells and is able to cause subsequent malignant transformation of particular genes.

Keywords

Prostate Real-time PCR Prostate cancer Human papillomavirus HPV 

Literatur

  1. 1.
    Penson DF, Chan JM, Urologic Diseases in America Project (2007) Prostate cancer. J Urol 177: 2020–2029PubMedCrossRefGoogle Scholar
  2. 2.
    Nam RK, Toi A, Klotz LH et al. (2007) Assessing individual risk for prostate cancer. J Clin Oncol 25: 3582–3588PubMedCrossRefGoogle Scholar
  3. 3.
    Nelen V (2007) Epidemiology of prostate cancer. Recent Results Cancer Res 175: 1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Ravich A, Ravich RA (1950) Prophylaxis of cancer of the prostate, penis, and cervix by circumcision. NY State J Med 50: 1519–1520Google Scholar
  5. 5.
    Al-Maghrabi JA (2007) The role of human papillomavirus infection in prostate cancer. Saudi Med J 28: 326–333PubMedGoogle Scholar
  6. 6.
    Sutcliffe S, Giovannucci E, Gaydos CA et al. (2007) Plasma antibodies against Chlamydia trachomatis, human papillomavirus, and human herpesvirus type 8 in relation to prostate cancer: a prospective study. Cancer Epidemiol Biomarkers Prev 16: 1573–1580PubMedCrossRefGoogle Scholar
  7. 7.
    Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350CrossRefGoogle Scholar
  8. 8.
    Sawaya GF, Smith-McCune K (2007) HPV vaccination – more answers, more questions. N Engl J Med 356: 19991–19993CrossRefGoogle Scholar
  9. 9.
    Zambrano A, Kalantari M, Simoneau A et al. (2002) Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 53: 263–276PubMedCrossRefGoogle Scholar
  10. 10.
    Choo CK, Ling MT, Chan KW et al. (1999) Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames. Prostate 40: 150–158PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor ML, Mainous AG 3rd, Wells BJ (2005) Prostate cancer and sexually transmitted diseases: a meta-analysis. Fam Med 37: 506–512PubMedGoogle Scholar
  12. 12.
    McNicol PJ, Dodd JG (1990) Detection of papillomavirus DNA in human prostatic tissue by Southern blot analysis. Can J Microbiol 36: 359–362PubMedCrossRefGoogle Scholar
  13. 13.
    McNicol PJ, Dodd JG (1990) Detection of human papillomavirus DNA in prostate gland tissue by using the polymerase chain reaction amplification assay. J Clin Microbiol 28: 409–412PubMedGoogle Scholar
  14. 14.
    Masood S, Rhatigan RM, Powell S et al. (1991) Human papillomavirus in prostatic cancer: no evidence found by in situ DNA hybridization. South Med J 84: 235–236PubMedGoogle Scholar
  15. 15.
    McNicol PJ, Dodd JG (1991) High prevalence of human papillomavirus in prostate tissues. J Urol 145: 850–853PubMedGoogle Scholar
  16. 16.
    Anwar K, Nakakuki K, Shiraishi T et al. (1992) Presence of ras oncogene mutations and human papillomavirus DNA in human prostate carcinomas. Cancer Res 52: 5991–5996PubMedGoogle Scholar
  17. 17.
    Serfling U, Ciancio G, Zhu WY et al. (1992) Human papillomavirus and herpes virus DNA are not detected in benign and malignant prostatic tissue using the polymerase chain reaction. J Urol 148: 192–194PubMedGoogle Scholar
  18. 18.
    Ibrahim GK, Gravitt PE, Dittrich KL et al. (1992) Detection of human papillomavirus in the prostate by polymerase chain reaction and in situ hybridization. J Urol 148: 1822–1826PubMedGoogle Scholar
  19. 19.
    Dodd JG, Paraskevas M, McNicol PJ (1993) Detection of human papillomavirus 16 transcription in human prostate tissue. J Urol 149: 400–402PubMedGoogle Scholar
  20. 20.
    Moyret-Lalle C, Marcais C, Jacquemier J et al. (1995) ras, p53 and HPV status in benign and malignant prostate tumors. Int J Cancer 64: 124–129PubMedCrossRefGoogle Scholar
  21. 21.
    Wideroff L, Schottenfeld D, Carey TE et al. (1996) Human papillomavirus DNA in malignant and hyperplastic prostate tissue of black and white males. Prostate 28: 117–123PubMedCrossRefGoogle Scholar
  22. 22.
    Dillner J, Knekt P, Boman J et al. (1998) Sero-epidemiological association between human-papillomavirus infection and risk of prostate cancer. Int J Cancer 75: 564–567PubMedCrossRefGoogle Scholar
  23. 23.
    Noda T, Sasagawa T, Dong Y et al. (1998) Detection of human papillomavirus (HPV) DNA in archival specimens of benign prostatic hyperplasia and prostatic cancer using a highly sensitive nested PCR method. Urol Res 26: 165–169PubMedCrossRefGoogle Scholar
  24. 24.
    Strickler HD, Burk R, Shah K et al. (1998) A multifaceted study of human papillomavirus and prostate carcinoma. Cancer 82: 1118–1125PubMedCrossRefGoogle Scholar
  25. 25.
    Serth J, Panitz F, Paeslack U et al. (1999) Increased levels of human papillomavirus type 16 DNA in a subset of prostate cancers. Cancer Res 59: 823–825PubMedGoogle Scholar
  26. 26.
    Hayes RB, Pottern LM, Strickler H et al. (2000) Sexual behaviour, STDs and risks for prostate cancer. Br J Cancer 82: 718–725PubMedCrossRefGoogle Scholar
  27. 27.
    Hisada M, Rabkin CS, Strickler HD et al. (2000) Human papillomavirus antibody and risk of prostate cancer. JAMA 283: 340–341PubMedCrossRefGoogle Scholar
  28. 28.
    Adami HO, Kuper H, Andersson SO et al. (2003) Prostate cancer risk and serologic evidence of human papilloma virus infection: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 12: 872–875PubMedGoogle Scholar
  29. 29.
    Rosenblatt KA, Carter JJ, Iwasaki LM et al. (2003) Serologic evidence of human papillomavirus 16 and 18 infections and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 12: 763–768PubMedGoogle Scholar
  30. 30.
    Carozzi F, Lombardi FC, Zendron P et al. (2004) Association of human papillomavirus with prostate cancer: analysis of a consecutive series of prostate biopsies. Int J Biol Markers 19: 257–261PubMedGoogle Scholar
  31. 31.
    Leiros GJ, Galliano SR, Sember ME et al. (2005) Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol 5: 15PubMedCrossRefGoogle Scholar
  32. 32.
    Korodi Z, Dillner J, Jellum E et al. (2005) Human papillomavirus 16, 18, and 33 infections and risk of prostate cancer: a Nordic nested case-control study. Cancer Epidemiol Biomarkers Prev 14: 2952–2955PubMedCrossRefGoogle Scholar
  33. 33.
    Koutsky L (1997) Epidemiology of genital human papillomavirus infection. Am J Med 102: 3–8PubMedCrossRefGoogle Scholar
  34. 34.
    Ledger WJ, Jeremias J, Witkin SS (2000) Testing for high-risk human papillomavirus types will become a standard of clinical care. Am J Obstet Gynecol 182: 860–865PubMedCrossRefGoogle Scholar
  35. 35.
    Hochreiter WW, Duncan JL, Schaeffer AJ (2000) Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J Urol 163: 127–130PubMedCrossRefGoogle Scholar
  36. 36.
    Tang S, Tao M, McCoy JP Jr, Zheng ZM (2006) The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol 80: 4249–4263PubMedCrossRefGoogle Scholar
  37. 37.
    Das D, Shah RB, Imperiale MJ (2004) Detection and expression of human BK virus sequences in neoplastic prostate tissues. Oncogene 23: 7031–7046PubMedCrossRefGoogle Scholar
  38. 38.
    McCabe MT, Low JA, Imperiale MJ, Day ML (2006) Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 25: 2727–2735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  • M. May
    • 1
  • R. Kalisch
    • 2
  • B. Hoschke
    • 1
  • T. Juretzek
    • 2
  • F. Wagenlehner
    • 3
  • S. Brookman-Amissah
    • 1
  • I. Spivak
    • 2
  • K.-P. Braun
    • 1
  • W. Bär
    • 2
  • C. Helke
    • 1
  1. 1.Urologische Klinik, Carl-Thiem-Klinikum CottbusLehrkrankenhaus der Universitätsklinik Charité zu BerlinCottbusDeutschland
  2. 2.Institut für Medizinische MikrobiologieCarl-Thiem-KlinikumCottbusDeutschland
  3. 3.Klinik für Urologie und KinderurologieJustus-Liebig-UniversitätGießenDeutschland

Personalised recommendations