Der Urologe

, Volume 46, Issue 11, pp 1485–1499 | Cite as

Nuklearmedizinische Diagnostik beim Prostatakarzinom

Aktueller Stand
Leitthema

Zusammenfassung

Das Prostatakarzinom ist die häufigste lebensbedrohliche Tumorerkrankung des Mannes in der westlichen Hemisphäre. In Deutschland muss mit ca. 40.600 Erkrankungen jährlich gerechnet werden. Die Mortalität liegt bei ca. 10% der Erkrankten. Ziel der prätherapeutischen Diagnostik ist die möglichst exakte Bestimmung des lokalen Ausmaßes des Prostatakarzinoms bezüglich intraprostatischer Lokalisation, Kapseldurchbruch, Samenblaseninfiltration, Infiltration der neurovaskulären Bündel und gegebenenfalls der umgebenden Organe des kleinen Beckens, die Detektion einer lokoregionären Lymphknotenmetastasierung und gegebenenfalls einer Fernmetastasierung. Eine exakte prätherapeutische Diagnostik ist deshalb wichtig, weil die verfügbaren Behandlungsstrategien in strenger Abhängigkeit vom festgestellten klinischen Stadium der Tumorerkrankung und Risikoprofil festgelegt werden müssen.

Die anatomische und funktionelle molekulare Bildgebung des Prostatakarzinoms hat in den letzten Jahren erhebliche Fortschritte erzielt. Insbesondere in diagnostischen Problemfällen, z. B. bei negativer Stanzbiopsie und persistierendem Verdacht auf ein Prostatakarzinom, können die 11C-/18F-Cholin-PET/CT-Bildgebung und die MRT/MRS des Prostatakarzinoms häufig das Karzinom lokalisieren, die Beziehung zu den umgebende intra- und extraprostatischen Strukturen und Organen darstellen und die eine gezielte Rebiopsie ermöglichen. Das nodale Staging des Prostatakarzinoms ist mit konventioneller Bildgebung ohne spezifische, derzeit klinisch noch nicht verfügbaren lymphotrope Kontrastmittel unzureichend spezifisch. Besondere Fortschritte wurde in der Bildgebung des Lokalrezidivs erzielt, das bei PSA Werten >0,5–1,0 ng/ml durch die Kombination von 11C-Cholin-PET/CT mit Kontrastmittel gestützter MRT nachgewiesen werden kann. Für die Diagnostik von Skelettmetastasen hat sich 18F-Natriumfluorid-PET/CT als hoch aussagekräftig erwiesen.

Schlüsselwörter

Prostatakarzinom Lokalrezidiv 11C-Cholin-PET/CT Molekulare Bildgebung Bildgebende Diagnostik 

Nuclear imaging of prostate cancer

Current status

Abstract

Prostate carcinoma is the most common life-threatening cancer affecting men in the western world. In Germany about 40,600 new cases have to be expected each year. The mortality is around 10%. The major goals of pretherapeutic imaging are to determine the local extent of prostate carcinoma in terms of intraprostate localisation, extracapsular extension (ECE), seminal vesicle invasion (SVI), tumour infiltration into neurovascular bundles, and if this has taken place, into surrounding tissues and organs in the small pelvis, detection of loco-regional metastases via the lymph nodes and of this so, of distant metastases. Exact pretherapeutic diagnosis and staging are essential, because the tumour treatment must be selected in strict dependence on clinical tumour stage and risk profile.

Both anatomic and functional molecular imaging of prostate carcinoma have advanced significantly in recent years. When there are problems with diagnosis, e.g. when prostate punch biopsies are negative while the suspicion of prostate carcinoma persists, C-11/F-18 choline PET/CT and MRT/MRS may be helpful in localising the carcinoma, revealing how the carcinoma relates to the surrounding intra- and extraprostatic structures and organs, and making a targeted repeat biopsy possible. Lymphotropic contrast agents are highly promising for accurate nodal staging of prostate carcinoma, but are not yet available for routine clinical use; In these circumstances, the sensitivity of nodal staging with the widely available imaging modalities remains inadequate, and its specificity is also less than optimal. There has been particularly substantial progress in the localisation of local relapse, which can be imaged with contrast-enhanced C-11-choline PET/CT and MRT in most cases when PSA is >0.5–1 ng/ml. 18F-Fluoride PET/CT has proved accurate in the diagnosis of skeletal metastases from prostate carcinoma.

Keywords

Prostate carcinoma Local relapse C-11-choline PET/CT Molecular imaging MRT 

Literatur

  1. 1.
    Jemal A, Murray T, Samuels A et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 53: 5–26CrossRefGoogle Scholar
  2. 2.
    Nelson WG, Carter HB, DeWeese TL et al. (2004) Prostate Cancer. In: Abeloff MD, Armitage JO, Niederhuber JE et al. (eds) Clinical oncology, 3rd edn. Elsevier, Philadelphia, pp 2085–2148Google Scholar
  3. 3.
    Even-Sapir E, Metser U, Mishani E et al. (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar Bone Scintigraphy, Single- and Multi-Field-of-View SPECT, 18F-Fluoride PET, and 18F-Fluoride PET/CT. J Nucl Med 47: 287–297PubMedGoogle Scholar
  4. 4.
    Reske SN, Blumstein NM, Neumaier B et al. (2006) Imaging prostate cancer with 11C-Choline PET/CT. J Nucl Med 47: 1249–1254PubMedGoogle Scholar
  5. 5.
    Reske SN, Blumstein NM, Glatting G (2006) Weiterentwicklung der PET und des PET/CT beim Prostatakarzinom. Urologe A 45: 707–714PubMedCrossRefGoogle Scholar
  6. 6.
    Reske SN, Blumstein NM, Glatting G (2006) PET und PET/CT in der Rezidivdiagnostik des Prostata-Karzinoms. Urologe A 45: 1240–1250PubMedCrossRefGoogle Scholar
  7. 7.
    Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199: 751–756PubMedGoogle Scholar
  8. 8.
    Effert PJ, Bares R, Handt S et al. (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155: 994–998PubMedCrossRefGoogle Scholar
  9. 9.
    Larson SM, Morris M, Gunther I et al. (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45: 366–373PubMedGoogle Scholar
  10. 10.
    Wachter S, Tomek S, Kurtaran A et al. (2006) Clinical impact of 11C-acetate positron emission tomography imaging and added value of image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 24: 2513–2519PubMedCrossRefGoogle Scholar
  11. 11.
    Heerschap A, Jager GJ, Graaf M van der (1997) In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res 17: 1455–1460PubMedGoogle Scholar
  12. 12.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39: 990–995PubMedGoogle Scholar
  13. 13.
    DeGrado TR, Coleman RE, Wang S et al. (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61: 110–117PubMedGoogle Scholar
  14. 14.
    Schmid DT, John H, Zweifel R et al. (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235: 623–628PubMedCrossRefGoogle Scholar
  15. 15.
    Kwee SA, Wei H, Sesterhenn I et al. (2006) Localization of primary prostate cancer with Dual-Phase 18F-Fluorocholine PET. J Nucl Med 47: 262–269PubMedGoogle Scholar
  16. 16.
    Scher B, Seitz M, Albinger W et al. (2007) Value of (11)C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imag 34: 45–53CrossRefGoogle Scholar
  17. 17.
    Schuster DM, Votaw JR, Nieh PT et al. (2007) Initial experience with the radiotracer anti-1-amino-3–18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48: 56–63PubMedGoogle Scholar
  18. 18.
    Hricak H, Choyke PL, Eberhardt SC et al. (2007) Imaging prostate cancer: A multidisciplinary perspective. Radiology 243: 28–53PubMedGoogle Scholar
  19. 19.
    Carroll PR, Coakley FV, Kurhanewicz J (2006) Magnetic resonance imaging and spectroscopy of prostate cancer. Rev Urol 8: 4–10Google Scholar
  20. 20.
    Prando A, Kurhanewicz J, Borges AP et al. (2005) Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology 236: 903–910PubMedCrossRefGoogle Scholar
  21. 21.
    Pathak AP, Gimi B, Glunde K et al. (2004) Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzymol 386: 3–60PubMedGoogle Scholar
  22. 22.
    Morakkabati-Spitz N, Bastian PJ, Meissner A et al. (2006) MR techniques for noninvasive diagnosis of prostate cancer. Urologe A 45: 702–705PubMedCrossRefGoogle Scholar
  23. 23.
    Jong IJ de, Pruim J, Elsinga PH et al. (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44: 331–335PubMedGoogle Scholar
  24. 24.
    Trabulsi EJ, Merriam WG, Gomella LG (2006) New imaging techniques in prostate cancer. Curr Urol Rep 7: 175–180PubMedCrossRefGoogle Scholar
  25. 25.
    Harisinghani MG, Barentsz J, Hahn PF et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499PubMedCrossRefGoogle Scholar
  26. 26.
    Harisinghani MG, Dixon WT, Saksena MA et al. (2004) MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10. Radiographics 24: 867–878PubMedCrossRefGoogle Scholar
  27. 27.
    Weissleder R, Elizondo G, Wittenberg J et al. (1990) Ultrasmall superparamagnetic iron oxide: an intravenous Contrast Agent for assessing Lymph Nodes with MR Imaging. Radiology 175: 494–498PubMedGoogle Scholar
  28. 28.
    Schauer AJ, Becker W, Reiser M, Possinger K (2005) The sentinel lymph node concept. Springer, Berlin Heidelberg New York, S 565Google Scholar
  29. 29.
    Vogt H, Wawroschek F, Wengenmair H et al. (2002) Sentinel lymph node diagnostic in prostate carcinoma: Part I: Technique and clinical evaluation. Nuklearmedizin 41: 95–101PubMedGoogle Scholar
  30. 30.
    Bott SR (2004) Management of recurrent disease after radical prostatectomy. Prostate Cancer Prostatic Dis 7: 211–216PubMedCrossRefGoogle Scholar
  31. 31.
    Pound CR, Partin AW, Eisenberger MA et al. (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281: 1591–1597PubMedCrossRefGoogle Scholar
  32. 32.
    Boccon-Gibod L, Djavan WB, Hammerer P et al. (2004) Management of prostate-specific antigen relapse in prostate cancer: a European Consensus. Int J Clin Pract 58: 382–390PubMedCrossRefGoogle Scholar
  33. 33.
    Kuban DA, Levy LB, Potters L et al. (2006) Comparison of biochemical failure definitions for permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 65: 1487–1493PubMedCrossRefGoogle Scholar
  34. 34.
    Heinisch M, Dirisamer A, Loidl W et al. (2006) Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml? Mol Imag Biol 8: 43–48CrossRefGoogle Scholar
  35. 35.
    Kotzerke J, Prang J, Neumaier B et al. (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27: 1415–1419PubMedCrossRefGoogle Scholar
  36. 36.
    Kotzerke J, Volkmer BG, Glatting G et al. (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42: 25–30PubMedGoogle Scholar
  37. 37.
    Oyama N, Miller TR, Dehdashti F et al. (2003) 11C-Acetate PET Imaging of prostate cancer: Detection of recurrent disease at PSA relapse. J Nucl Med 44: 549–555PubMedGoogle Scholar
  38. 38.
    Picchio M, Messa C, Landoni C et al. (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169: 1337–1340PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshida S, Nakagomi K, Goto S et al. (2005) 11C-Choline positron emission tomography in prostate cancer: Primary staging and recurrent site staging. Urol lnt 74: 214–220CrossRefGoogle Scholar
  40. 40.
    Albrecht S, Buchegger F, Soloviev D et al. (2007) 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imag, Epub ahead of print (in press)Google Scholar
  41. 41.
    Cimitan M, Bortolus R, Morassut S et al. (2006) [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33: 1387–1398PubMedCrossRefGoogle Scholar
  42. 42.
    Sandblom G, Sörensen J, Lundin N et al. (2006) Positron emission tomography with C11-Acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 67: 996–1000PubMedCrossRefGoogle Scholar
  43. 43.
    Albrecht S, Buchegger F, Soloviev D et al. (2007) 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imag 34: 185–196CrossRefGoogle Scholar
  44. 44.
    Reske SN, Blumstein NM, Glatting G (2007) [11C]Choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imag (in press)Google Scholar
  45. 45.
    Schirrmeister H, Guhlmann A, Elsner K et al. (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40: 1623–1629PubMedGoogle Scholar
  46. 46.
    Schirrmeister H, Glatting G, Hetzel J et al. (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42: 1800–1804PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Klinik für NuklearmedizinUniversitätsklinikumUlmDeutschland

Personalised recommendations