Der Urologe

, Volume 46, Issue 7, pp 733–739

Kapillarelektrophorese gekoppelte Massenspektrometrie zur Proteomanalyse

Eine innovative diagnostische Methode bei Prostata- und Blasenkrebs
Übersichten

Zusammenfassung

Zur nicht-invasiven Erkennung von Urothel- oder Prostatakarzinomen wurde eine Proteomuntersuchung von Urin entwickelt. Mittels Kapillarelektrophorese gekoppelter Massenspektrometrie werden krankheitsspezifische Veränderungen von Polypeptiden im Urinproteom detektiert und als relevant erkannte Polypeptide als diagnostische Biomarker eingesetzt. Wir berichten hier über die Ergebnisse von mehreren Studien an ca. 1000 Patienten und Kontrollpersonen.

Die erhaltenen Daten zeigen, dass Prostata- und Urothelkarzinome mit Hilfe von spezifischen Polypeptidmustern im Urin erkannt werden können. Erste weiterführende Untersuchungen deuten zudem an, dass auch die Invasivität des Urothelkarzinoms mit Hilfe der Proteomanalyse abgeschätzt werden kann. Diese neue nicht-invasive Untersuchungsmethode von Urinproteinmustern könnte zu einer Verbesserung der bislang verfügbaren diagnostischen Methoden beitragen.

Schlüsselwörter

Kapillarelektrophorese Massenspektrometrie Urothelkarzinom Prostatakarzinom Proteomics 

Capillary electrophoresis coupled to mass spectrometry for proteome analysis

An innovative diagnostic method for prostate and bladder cancer

Abstract

We developed a proteomics-based technology for the non-invasive detection of urothelial and prostate carcinoma. Using capillary electrophoresis coupled to mass spectrometry, disease-specific changes in the urinary proteome were detected and subsequently relevant polypeptides were employed as disease-specific biomarkers. Here we report the results of various studies including approximately 1,000 patients with different diseases and healthy volunteers.

The results of these studies revealed that prostate and urothelial carcinoma can be detected by using disease-specific polypeptide patterns. Preliminary results also indicate that the tumour stage of an urothelial carcinoma can be estimated by this approach. In conclusion, this new and non-invasive application might help to improve the diagnostic methods already available.

Keywords

Capillary electrophoresis CE-MS Urothelial carcinoma Prostate carcinoma Proteomics 

Literatur

  1. 1.
    Catalona WJ, Smith DS, Ratliff TL et al. (1991) Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 324: 1156–1161PubMedCrossRefGoogle Scholar
  2. 2.
    Presti JC Jr (2000) Prostate cancer: assessment of risk using digital rectal examination, tumor grade, prostate-specific antigen, and systematic biopsy. Radiol Clin North Am 38: 49–58PubMedCrossRefGoogle Scholar
  3. 3.
    Kolch W, Neususs C, Pelzing M, Mischak H (2005) Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 24: 959–977PubMedCrossRefGoogle Scholar
  4. 4.
    Theodorescu D, Wittke S, Ross MM et al. (2006) Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 7: 230–240PubMedCrossRefGoogle Scholar
  5. 5.
    Fliser D, Wittke S, Mischak H (2005) Capillary electrophoresis coupled to mass spectrometry for clinical diagnostic purposes. Electrophoresis 26: 2708–2716PubMedCrossRefGoogle Scholar
  6. 6.
    Schaub S, Wilkins J, Weiler T et al. (2004) Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 65: 323–332PubMedCrossRefGoogle Scholar
  7. 7.
    Theodorescu D, Fliser D, Wittke S et al. (2005) Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis 26: 2797–2808PubMedCrossRefGoogle Scholar
  8. 8.
    Zuerbig P, Renfrow MB, Schiffer E et al. (2007) Biomarker discovery by CE-MS enables sequence analysis via tandem mass spectrometry with platform-independent separation. Electrophoresis (in press)Google Scholar
  9. 9.
    Haubitz M, Wittke S, Weissinger EM et al. (2005) Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 67: 2313–2320PubMedCrossRefGoogle Scholar
  10. 10.
    Weissinger EM, Wittke S, Kaiser T et al. (2004) Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int 65: 2426–2434PubMedCrossRefGoogle Scholar
  11. 11.
    Decramer S, Wittke S, Mischak H et al. (2006) Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med 12: 398–400PubMedCrossRefGoogle Scholar
  12. 12.
    Rossing K, Mischak H, Parving HH et al. (2005) Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int 68: 193–205PubMedCrossRefGoogle Scholar
  13. 13.
    Obiezu CV, Shan SJ, Soosaipillai A et al. (2005) Human kallikrein 4: quantitative study in tissues and evidence for its secretion into biological fluids. Clin Chem 51: 1432–1442PubMedCrossRefGoogle Scholar
  14. 14.
    Acevedo B, Perera Y, Torres E et al. (2006) Fast and novel purification method to obtain the prostate specific antigen (PSA) from human seminal plasma. Prostate 66: 1029–1036PubMedCrossRefGoogle Scholar
  15. 15.
    Bergen HR III, Vasmatzis G, Cliby WA et al. (2003) Discovery of ovarian cancer biomarkers in serum using NanoLC electrospray ionization TOF and FT-ICR mass spectrometry. Dis Markers 19: 239–249PubMedGoogle Scholar
  16. 16.
    Abbasciano V, Tassinari D, Sartori S et al. (1995) Usefulness of coagulation markers in staging of gastric cancer. Cancer Detect Prev 19: 331–336PubMedGoogle Scholar
  17. 17.
    Sonel A, Sasseen BM, Fineberg N et al. (2000) Prospective study correlating fibrinopeptide A, troponin I, myoglobin, and myosin light chain levels with early and late ischemic events in consecutive patients presenting to the emergency department with chest pain. Circulation 102: 1107–1113PubMedGoogle Scholar
  18. 18.
    Blok LJ, Chang GT, Steenbeek-Slotboom M et al. (1999) Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer. Br J Cancer 81: 28–36PubMedCrossRefGoogle Scholar
  19. 19.
    Perler FB (2005) Protein splicing mechanisms and applications. IUBMB Life 57: 469–476PubMedCrossRefGoogle Scholar
  20. 20.
    Seizinger BR, Grimm C, Herz A (1984) Evidence for a differential postnatal development of proenkephalin B (-prodynorphin)-derived opioid peptides in the rat hypothalamus. Endocrinology 115: 926–935PubMedCrossRefGoogle Scholar
  21. 21.
    Neuhoff N, Kaiser T, Wittke S et al. (2004) Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18: 149–156PubMedCrossRefGoogle Scholar
  22. 22.
    Roehl KA, Antenor JA, Catalona WJ (2002) Serial biopsy results in prostate cancer screening study. J Urol 167: 2435–2439PubMedCrossRefGoogle Scholar
  23. 23.
    Djavan B, Milani S, Remzi M (2005) Prostate biopsy: who, how and when. An update. Can J Urol 12(Suppl 1): 44–48PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Diapat GmbHHannoverDeutschland
  2. 2.Mosaiques Diagnostics and Therapeutics AGHannoverDeutschland
  3. 3.Urologie MaximilianstraßeMünchenDeutschland

Personalised recommendations