Der Urologe

, Volume 44, Issue 11, pp 1262–1276

Innovative Diagnostik in der Früherkennung und beim Staging des lokalisierten Prostatakarzinoms

  • L. Rinnab
  • R. Küfer
  • R. E. Hautmann
  • B. G. Volkmer
  • M. Straub
  • N. M. Blumstein
  • H. W. Gottfried
Leitthema

Zusammenfassung

Das Prostatakarzinom ist das häufigste Malignom des Mannes. Zur Früherkennung wird Männern >50 Jahren eine einmal jährliche digito-rektale Untersuchung und PSA-Bestimmung empfohlen. Erfreulicherweise nimmt die krankheitsspezifische Mortalitätsrate aufgrund der Fortschritte in Screening, Staging und ansteigendem Patientenbewusstsein ab. Wie auch immer, etwa 30% aller Männer mit einem klinisch lokal begrenzten Prostatakarzinom weisen nach histopathologischer Aufarbeitung eine extrakapsuläre Ausbreitung oder Samenblaseninfiltration auf. Aus diesem Grund besteht ein Bedarf für eine möglichst exakte Bildgebung, um dem Patienten eine optimale stadiengerechte Therapie anbieten zu können.

Derzeit existieren eine vielversprechende Anzahl an neuen Bildgebungstechnologien, die die Diagnostik und das Staging verbessern können und so helfen, den Patienten eine optimale stadiengerechte Therapie anbieten zu können. Diese Übersichtsarbeit beleuchtet die aktuellen Entwicklungen auf dem Gebiet der Früherkennung und des Stagings beim lokal begrenzten Prostatakarzinoms.

Schlüsselwörter

Prostatakarzinom Staging Früherkennung CT MRT PET/CT 

Innovative concepts in early cancer detection and staging of localized prostate cancer

Abstract

Prostate cancer is the most common malignancy in males. Men aged 50 years and older are recommended to undergo an annual digital rectal examination (DRE) and determination of prostate-specific antigen (PSA) in serum for early detection. Fortunately, disease-specific mortality continues to decline as a result of advances in screening, staging, and patient awareness. However, about 30% of men with a clinically organ-confined disease show evidence of extracapsular extension or seminal vesicle invasion on pathological analysis. Consequently, there is a need for more accurate diagnostic tools for planning tailored treatment.

A variety of modern imaging techniques has been implemented in an attempt to obtain more precise staging, thereby allowing for more detailed counseling, and instituting optimum therapy. This review highlights developments in prostate cancer imaging that may improve staging and treatment planning for prostate cancer patients.

Keywords

Prostate cancer Staging Early detection CT MRI PET/CT 

Literatur

  1. 1.
    American Cancer Society (2004) Cancer facts and figures. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Pepper RJ, Pati J, Kaisary AV (2005) The incidence and treatment of lymphoceles after radical retropubic prostatectomy. BJU Int 95: 772–775CrossRefPubMedGoogle Scholar
  3. 3.
    Halpern EJ, Strup SE (2000) Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol 174: 623–627PubMedGoogle Scholar
  4. 4.
    Norberg M, Egevad L, Holmberg L, Sparen P, Norlen BJ, Busch C (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50: 562–566CrossRefPubMedGoogle Scholar
  5. 5.
    Naughton CK, Miller DC, Mager DE, Ornstein DK, Catalona WJ (2000) A prospective randomized trial comparing 6 versus 12 prostate biopsy cores: impact on cancer detection. J Urol 164: 388–392CrossRefPubMedGoogle Scholar
  6. 6.
    Cornud F, Belin X, Piron D et al. (1997) Color Doppler-guided prostate biopsies in 591 patients with an elevated serum PSA level: Impact on Gleason score for nonpalpable lesions. Urology 49: 709–715CrossRefPubMedGoogle Scholar
  7. 7.
    Loch T (2004) Computerized supported transrectal ultrasound (C-TRUS) in the diagnosis of prostate cancer. Urologe A 43: 1377–1384CrossRefPubMedGoogle Scholar
  8. 8.
    Rifkin MD, Zerhouni EA, Gatsonis CA et al. (1990) Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med 323: 621–626PubMedGoogle Scholar
  9. 9.
    Smith JA Jr, Scardino PT, Resnick MI, Hernandez AD, Rose SC, Egger MJ (1997) Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: Results of a prospective, multi-institutional trial. J Urol 157: 902–906CrossRefPubMedGoogle Scholar
  10. 10.
    Ikonen S, Karkkainen P, Kivisaari L et al. (1998) Magnetic resonance imaging of clinically localized prostatic cancer. J Urol 159: 915–919CrossRefPubMedGoogle Scholar
  11. 11.
    Presti JC Jr, Hricak H, Narayan PA, Shinohara K, White S, Carroll PR (1996) Local staging of prostatic carcinoma: comparison of transrectal sonography and endorectal MR imaging. AJR Am J Roentgenol 166: 103–108PubMedGoogle Scholar
  12. 12.
    Leibovici D, Kamat AM, Do KA et al. (2005) Transrectal ultrasound versus magnetic resonance imaging for detection of rectal wall invasion by prostate cancer. Prostate 62: 101–104CrossRefPubMedGoogle Scholar
  13. 13.
    Shirahama T, Niwa K, Katsura Y et al. (1999) Endorectal ultrasonography for the assessment of rectal wall invasion in intrapelvic tumor: a preliminary report. Int J Urol 6: 293–297CrossRefPubMedGoogle Scholar
  14. 14.
    Colombo T, Schips L, Augustin H, Gruber H, Hebel P, Petritsch PH, Hubmer G (1999) Value of transrectal ultrasound in preoperative staging of prostate cancer. Minerva Urol Nefrol 51: 1–4PubMedGoogle Scholar
  15. 15.
    Frauscher F, Klauser A, Halpern EJ (2002) Advances in ultrasound for the detection of prostate cancer. Ultrasound Q 18: 135–142CrossRefPubMedGoogle Scholar
  16. 16.
    Kelly IM, Lees WR, Rickards D (1993) Prostate cancer and the role of color Doppler US. Radiology 189: 153–156PubMedGoogle Scholar
  17. 17.
    Unal D, Sedelaar JP, Aarnink RG et al. (2000) Three-dimensional contrast-enhanced power Doppler ultrasonography and conventional examination methods: the value of diagnostic predictors of prostate cancer. BJU Int 86: 58–64CrossRefGoogle Scholar
  18. 18.
    Halpern EJ, Frauscher F, Rosenberg M, Gomella LG (2002) Directed biopsy during contrast-enhanced sonography of the prostate. AJR Am J Roentgenol 178: 915–919PubMedGoogle Scholar
  19. 19.
    Bogers HA, Sedelaar JP, Beerlage HP, de la Rosette JJ, Debruyne FM, Wijkstra H, Aarnink RG (1999) Contrast-enhanced three-dimensional power Doppler angiography of the human prostate: Correlation with biopsy outcome. Urology 54: 97–104CrossRefPubMedGoogle Scholar
  20. 20.
    Halpern EJ, Rosenberg M, Gomella LG (2001) Prostate cancer: Contrast-enhanced us for detection. Radiology 219: 219–225PubMedGoogle Scholar
  21. 21.
    Frauscher F, Pallwein L, Klauser A et al. (2005) Ultrasound contrast agents and prostate cancer. Radiologe 45: 544–551CrossRefPubMedGoogle Scholar
  22. 22.
    Strohmeyer D, Frauscher F, Klauser A et al. (2001) Contrast-enhanced transrectal color doppler ultrasonography (TRCDUS) for assessment of angiogenesis in prostate cancer. Anticancer Res 21: 2907–2913PubMedGoogle Scholar
  23. 23.
    Loch T, Leuschner I, Genberg C et al. (2000) Improvement of transrectal ultrasound. Artificial neural network analysis (ANNA) in detection and staging of prostatic carcinoma. Urologe A 39: 341–347CrossRefPubMedGoogle Scholar
  24. 24.
    Loch T, Leuschner I, Genberg C et al. (1999) Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. Prostate 39: 198–204CrossRefPubMedGoogle Scholar
  25. 25.
    Ellis WJ, Chetner MP, Preston SD, Brawer MK (1994) Diagnosis of prostatic carcinoma: the yield of serum prostate specific antigen, digital rectal examination and transrectal ultrasonography. J Urol 152: 1520–1525PubMedGoogle Scholar
  26. 26.
    Carter HB, Hamper UM, Sheth S, Sanders RC, Epstein JI, Walsh PC (1989) Evaluation of transrectal ultrasound in the early detection of prostate cancer. J Urol 142: 1008–1010PubMedGoogle Scholar
  27. 27.
    Mehta SS, Azzouzi AR, Hamdy FC (2004) Three dimensional ultrasound and prostate cancer. World J Urol 22: 339–345CrossRefPubMedGoogle Scholar
  28. 28.
    Hamper UM, Trapanotto V, DeJong MR, Sheth S, Caskey CI (1999) Three-dimensional US of the prostate: early experience. Radiology 212: 719–723PubMedGoogle Scholar
  29. 29.
    Garg S, Fortling B, Chadwick D, Robinson MC, Hamdy FC (1999) Staging of prostate cancer using 3-dimensional transrectal ultrasound images: A pilot study. J Urol 162: 1318–1321CrossRefPubMedGoogle Scholar
  30. 30.
    Strasser H, Frauscher F, Klauser A et al. (2004) Transrectal three dimensional sonography. Techniques and indications. Urologe A 43: 1371–1376CrossRefPubMedGoogle Scholar
  31. 31.
    Sauvain JL, Palascak P, Bourscheid D, Chabi C, Atassi A, Bremon JM, Palascak R (2003) Value of power doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur Urol 44: 21–30CrossRefPubMedGoogle Scholar
  32. 32.
    Hricak H, Dooms GC, Jeffrey RB et al. (1987) Prostatic carcinoma: Staging by clinical assessment, CT, and MR imaging. Radiology 162: 331–336PubMedGoogle Scholar
  33. 33.
    Yu KK, Hricak H (2000) Imaging prostate cancer. Radiol Clin North Am 38: 59–85CrossRefPubMedGoogle Scholar
  34. 34.
    Oyen RH, Van Poppel HP, Ameye FE, Van de Voorde WA, Baert AL, Baert LV (1994) Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: Prospective study of 285 patients. Radiology 190: 315–322PubMedGoogle Scholar
  35. 35.
    Nicolas V, Beese M, Keulers A, Bressel M, Kastendieck H, Huland H (1994) MR tomography in prostatic carcinoma: comparison of conventional and endorectal MRT. Rofo 161: 319–326PubMedGoogle Scholar
  36. 36.
    Tempany CM, Rahmouni AD, Epstein JI, Walsh PC, Zerhouni EA (1991) Invasion of the neurovascular bundle by prostate cancer: evaluation with MR imaging. Radiology 181: 107–112PubMedGoogle Scholar
  37. 37.
    Brassell SA, Rosner IL, McLeod DG (2005) Update on magnetic resonance imaging, ProstaScint, and novel imaging in prostate cancer. Curr Opin Urol 15: 163–166CrossRefPubMedGoogle Scholar
  38. 38.
    Beyersdorff D, Hamm B (2005) MRI for troubleshooting detection of prostate cancer. Rofo 177: 788–795PubMedGoogle Scholar
  39. 39.
    Dhingsa R, Qayyum A, Coakley FV et al. (2004) Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230: 215–220PubMedGoogle Scholar
  40. 40.
    Perrotti M, Han KR, Epstein RE et al. (1999) Prospective evaluation of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostastic biopsy: a pilot study. J Urol 162: 1314–1317CrossRefPubMedGoogle Scholar
  41. 41.
    Beyersdorff D, Taupitz M, Winkelmann B, Fischer T, Lenk S, Loening SA, Hamm B (2002) Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: Value of MR imaging. Radiology 224: 701–706PubMedGoogle Scholar
  42. 42.
    D’Amico AV (1996) What is the optimal patient selection for combined androgen ablative and radiation therapy? The role of combined modality staging. Hematol Oncol Clin North Am 10: 643–651CrossRefPubMedGoogle Scholar
  43. 43.
    Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61CrossRefPubMedGoogle Scholar
  44. 44.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15: 621–628PubMedGoogle Scholar
  45. 45.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14: 249–265PubMedGoogle Scholar
  46. 46.
    Hawighorst H, Schaeffer U, Knapstein PG et al. (1998) Detection of angiogenesis-dependent parameters by functional MRI: Correlation with histomorphology and evaluation of clinical relevance as prognostic factor using cervix carcinoma as an example. Rofo 169: 499–504PubMedGoogle Scholar
  47. 47.
    Brown G, Macvicar DA, Ayton V, Husband JE (1995) The role of intravenous contrast enhancement in magnetic resonance imaging of prostatic carcinoma. Clin Radiol 50: 601–606PubMedGoogle Scholar
  48. 48.
    Engelbrecht MR, Huisman HJ, Laheij RJ et al. (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229: 248–254PubMedGoogle Scholar
  49. 49.
    Gossmann A, Okuhata Y, Shames DM (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media--preliminary experience. Radiology 213: 265–272PubMedGoogle Scholar
  50. 50.
    Kiessling F, Huber PE, Grobholz R et al. (2004) Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy. Invest Radiol 39: 34–44CrossRefPubMedGoogle Scholar
  51. 51.
    Scheidler J, Hricak H, Vigneron DB et al. (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging — clinicopathologic study. Radiology 213: 473–480PubMedGoogle Scholar
  52. 52.
    Taupitz M, Beyersdorff D, Rogalla P (2004) Cross-section diagnosis of tumors of the kidney and prostate gland: CT and MRI. Aktuelle Urol 35: 297–306CrossRefPubMedGoogle Scholar
  53. 53.
    Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7 cm3) spatial resolution. Radiology 198: 795–805PubMedGoogle Scholar
  54. 54.
    Harisinghani MG, Barentsz J, Hahn PF et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499CrossRefPubMedGoogle Scholar
  55. 55.
    Hautzel H, Muller-Mattheis V, Herzog H et al. (2002) The (11C) acetate positron emission tomography in prostatic carcinoma. New prospects in metabolic imaging. Urologe A 41: 569–576CrossRefPubMedGoogle Scholar
  56. 56.
    DeGrado TR, Coleman RE, Wang S et al. (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61: 110–117PubMedGoogle Scholar
  57. 57.
    DeGrado TR, Baldwin SW, Wang S et al. (2001) Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42: 1805–1814PubMedGoogle Scholar
  58. 58.
    Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34: 274–292CrossRefPubMedGoogle Scholar
  59. 59.
    Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57: 108–111CrossRefPubMedGoogle Scholar
  60. 60.
    Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155: 994–998CrossRefPubMedGoogle Scholar
  61. 61.
    Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36: 31–35CrossRefGoogle Scholar
  62. 62.
    Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K (1999) The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29: 623–629CrossRefPubMedGoogle Scholar
  63. 63.
    Machtens S, Boerner AR, Hofmann M, Knapp WH, Jonas U (2004) Positron emission tomography (PET) for diagnosis and monitoring of treatment for urological tumors. Urologe A 43: 1397–1409CrossRefPubMedGoogle Scholar
  64. 64.
    Oyama N, Miller TR, Dehdashti F et al. (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44: 549–555PubMedGoogle Scholar
  65. 65.
    Kato T, Tsukamoto E, Kuge Y et al. (2002) Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imag 29: 1492–1495CrossRefGoogle Scholar
  66. 66.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39: 990–995PubMedGoogle Scholar
  67. 67.
    de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42: 18–23CrossRefPubMedGoogle Scholar
  68. 68.
    Kotzerke J, Prang J, Neumaier B et al. (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27: 1415–1419CrossRefPubMedGoogle Scholar
  69. 69.
    de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44: 32–39CrossRefPubMedGoogle Scholar
  70. 70.
    Kotzerke J, Volkmer BG, Glatting G et al. (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42: 25–30PubMedGoogle Scholar
  71. 71.
    Blumstein N (2003) Is 11C-Choline PET/CT better tan TRUS-guided biopsy for detection prostate cancer. Eur J Nucl Med 30: 193Google Scholar
  72. 72.
    Blumstein N (2005) Stellenwert der PET/CT-Diagnostik beim Prostatakarzinom. Nuklearmedizin 44: 15–19PubMedGoogle Scholar
  73. 73.
    Schmid DT, Zweifel R (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235: 623–628PubMedGoogle Scholar
  74. 74.
    Picchio M, Landoni C (2003) Value of 11C choline-positron emission tomography for restaging prostate cancer: a comparison with 18F fluorodeoxyglucose-positron emission tomography. J Urol 169: 1337–1340CrossRefPubMedGoogle Scholar
  75. 75.
    Yamaguchi T, Uemura H (2005) Prostate cancer: A comparative study of (11)C-Choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imag 32: 742–748CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • L. Rinnab
    • 1
    • 3
  • R. Küfer
    • 1
  • R. E. Hautmann
    • 1
  • B. G. Volkmer
    • 1
  • M. Straub
    • 1
  • N. M. Blumstein
    • 2
  • H. W. Gottfried
    • 1
  1. 1.Abteilung Urologie und KinderurologieUniversitätsklinikumUlm
  2. 2.Abteilung NuklearmedizinUniversitätsklinikumUlm
  3. 3.Abteilung Urologie und KinderurologieUniversitätsklinikumUlm

Personalised recommendations