Advertisement

Der Radiologe

, Volume 59, Issue 3, pp 257–272 | Cite as

Akromioklavikulargelenk

Das „vergessene“ Gelenk
  • C. KrestanEmail author
  • B. Pretterklieber
  • M. Pretterklieber
  • J. Kramer
CME
  • 474 Downloads

Zusammenfassung

Neben arthrotischen sind die (post)traumatischen Läsionen die häufigsten Veränderungen des Akromioklavikular(AC)-Gelenks. Deren Einteilung erfolgt nach Rockwood. Wichtigste Screeninguntersuchung für Dislokationen ist nach wie vor die anteroposteriore Röntgenaufnahme, idealerweise unter Gewichtsbelastung mit Seitenvergleich. Die Magnetresonanztomographie (MRT) ist in der Lage, ohne Gewichtsbelastung ein genaueres Abbild bzw. eine Klassifizierung der Dislokationen zu erreichen. Die postoperative Bildgebung sowie die Beurteilung arthrotischer Veränderungen erfolgen in der Regel ebenfalls per Röntgen, wobei die MRT als weiterführende Untersuchungsmodalität angewandt wird. Die Sonographie hat nur eine limitierte Bedeutung. Die Multidetektorcomputertomographie (MDCT) wird in der Regel nicht primär am AC-Gelenk angewandt, sondern im Rahmen der MDCT der Schulter mitbeurteilt.

Schlüsselwörter

Schulter Rockwood Röntgen MRT CT 

Acromioclavicular joint

The “forgotten” joint

Abstract

Besides osteoarthritic changes, traumatic and posttraumatic lesions are the most frequent alterations of the acromioclavicular (AC) joint. The Rockwood classification is used to describe posttraumatic lesions. The most important screening modality is anteroposterior x‑ray imaging, preferably with weight bearing and side to side comparison. Magnetic resonance imaging (MRI) without weight bearing is superior to x‑rays in analyzing and classifying AC joint dislocations. Postoperative imaging and assessment of arthritic alterations are usually carried out using x‑ray images and MRI is used as an additional examination modality. Sonography is only of limited value. Multidetector computed tomography (MDCT) is usually not used as a primary imaging modality for the AC joint; however, it can be analyzed simultaneously whenever the shoulder joint is being investigated with MDCT.

Keywords

Shoulder Rockwood X-rays Magnetic resonance imaging Computed tomography 

Notes

Danksagung

Mit Genehmigung des Verlegers (Breitenseher Publisher) wurden mehrere Abbildungen aus Shahabpour et al. [4] verwendet.

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Krestan, B. Pretterklieber, M. Pretterklieber und J. Kramer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Anwar I et al (2016) Physes around the shoulder girdle: normal development and injury patterns. Clin Radiol 71(7):702–709CrossRefGoogle Scholar
  2. 2.
    Kummer (2005) Biomechanik. Form und Funktion des Bewegungsapparates. Deutscher Ärzte-Verlag, KölnGoogle Scholar
  3. 3.
    Williams PL, Warwick R (1980) Arthrology. In: Williams PL, Warwick R (Hrsg) Gray’s anatomy. Churchill Livingstone, EdinburghGoogle Scholar
  4. 4.
    Shahabpour M, Sutter R, Kramer J (Hrsg) (2017) Acromiclavicular and Sternoclavicular joint disorders. In: MRI of the shoulder. Breitenseher Publisher, Horn. ISBN 978-3902933447Google Scholar
  5. 5.
    Williams PL, Warwick R (1980) Osteology. In: Williams PL, Warwick R (Hrsg) Gray’s Anatomy. Churchill Livingstone, EdinburghGoogle Scholar
  6. 6.
    Sammarco VJ (2000) Os acromiale: frequency, anatomy, and clinical implications. J Bone Joint Surg Am 82(3):394–400CrossRefGoogle Scholar
  7. 7.
    Roedl JB et al (2015) Frequency, imaging findings, risk factors, and long-term sequelae of distal clavicular osteolysis in young patients. Skeletal Radiol 44(5):659–666CrossRefGoogle Scholar
  8. 8.
    Ha AS, Petscavage-Thomas JM, Tagoylo GH (2014) Acromioclavicular joint: the other joint in the shoulder. Ajr Am J Roentgenol 202(2):375–385CrossRefGoogle Scholar
  9. 9.
    Ottomeyer C et al (2016) Midshaft clavicle fractures with associated ipsilateral acromioclavicular joint dislocations: Incidence and risk factors. Injury 48(2):469–473.  https://doi.org/10.1016/j.injury.2016.12.021. Epub 2016 Dec 28CrossRefPubMedGoogle Scholar
  10. 10.
    Rockwood C (1979) Subluxation of the shoulder. The classification, diagnosis, and treatment. Orthop Trans 4:306Google Scholar
  11. 11.
    Gorbaty JD, Hsu JE, Gee AO (2017) Classifications in brief: Rockwood classification of Acromioclavicular joint separations. Clin Orthop Relat Res 475(1):283–287CrossRefGoogle Scholar
  12. 12.
    Schneider MM et al (2016) Inter- and intraobserver reliability of the Rockwood classification in acute acromioclavicular joint dislocations. Knee Surg Sports Traumatol Arthrosc 24(7):2192–2196CrossRefGoogle Scholar
  13. 13.
    Balke M et al (2015) Acute acromioclavicular joint injuries. Changes in diagnosis and therapy over the last 10 years. Unfallchirurg 118(10):851–857CrossRefGoogle Scholar
  14. 14.
    Balke M et al (2015) Current state of treatment of acute acromioclavicular joint injuries in Germany: is there a difference between specialists and non-specialists? A survey of German trauma and orthopaedic departments. Knee Surg Sports Traumatol Arthrosc 23(5):1447–1452CrossRefGoogle Scholar
  15. 15.
    North AS (2016) Rockwood grade I and II acromioclavicular injuries: as benign as commonly believed? Joints 4(3):171–173CrossRefGoogle Scholar
  16. 16.
    Eschler A et al (2014) Acromioclavicular joint dislocations: radiological correlation between Rockwood classification system and injury patterns in human cadaver species. Arch Orthop Trauma Surg 134(9):1193–1198CrossRefGoogle Scholar
  17. 17.
    Horst K et al (2016) Comparative study on the treatment of Rockwood type III acute acromioclavicular dislocation: clinical results from the TightRope(R) technique vs. K‑wire fixation. Orthop Traumatol Surg Res 103(2):171–176.  https://doi.org/10.1016/j.otsr.2016.11.009. Epub 2016 Dec 8CrossRefPubMedGoogle Scholar
  18. 18.
    Ye G et al (2016) Treatment of Rockwood type III acromioclavicular joint dislocation using autogenous semitendinosus tendon graft and endobutton technique. Ther Clin Risk Manag 12:47–51CrossRefGoogle Scholar
  19. 19.
    Hootman JM (2004) Acromioclavicular dislocation: conservative or surgical therapy. J Athl Train 39(1):10–11PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ibrahim EF, Forrest NP, Forester A (2015) Bilateral weighted radiographs are required for accurate classification of acromioclavicular separation: an observational study of 59 cases. Injury 46(10):1900–1905CrossRefGoogle Scholar
  21. 21.
    Lehtinen JT et al (2000) Relation of glenohumeral and acromioclavicular joint destruction in rheumatoid shoulder. A 15 year follow up study. Ann Rheum Dis 59(2):158–160CrossRefGoogle Scholar
  22. 22.
    McDonald S, Hopper MA (2015) Acromioclavicular joint disease. Semin Musculoskelet Radiol 19(3):300–306CrossRefGoogle Scholar
  23. 23.
    Tauber M (2013) Management of acute acromioclavicular joint dislocations: current concepts. Arch Orthop Trauma Surg 133(7):985–995CrossRefGoogle Scholar
  24. 24.
    Tauber M (2014) Acromioclavicular injuries in professional athletes. Orthopade 43(3):249–255CrossRefGoogle Scholar
  25. 25.
    Beitzel K et al (2013) Current concepts in the treatment of acromioclavicular joint dislocations. Arthroscopy 29(2):387–397CrossRefGoogle Scholar
  26. 26.
    Fialka C et al (2005) Visualization of intraarticular structures of the acromioclavicular joint in an ex vivo model using a dedicated MRI protocol. Ajr Am J Roentgenol 185(5):1126–1131CrossRefGoogle Scholar
  27. 27.
    Nemec U et al (2011) MRI versus radiography of acromioclavicular joint dislocation. Ajr Am J Roentgenol 197(4):968–973CrossRefGoogle Scholar
  28. 28.
    Antonio GE et al (2003) Pictorial essay. MR imaging appearance and classification of acromioclavicular joint injury. Ajr Am J Roentgenol 180(4):1103–1110CrossRefGoogle Scholar
  29. 29.
    Alyas F et al (2008) MR imaging appearances of acromioclavicular joint dislocation. Radiographics 28(2):463–479 (quiz 619)CrossRefGoogle Scholar
  30. 30.
    Schaefer FK et al (2006) Experimental and clinical evaluation of acromioclavicular joint structures with new scan orientations in MRI. Eur Radiol 16(7):1488–1493CrossRefGoogle Scholar
  31. 31.
    Izadpanah K et al (2013) A stress MRI of the shoulder for evaluation of ligamentous stabilizers in acute and chronic acromioclavicular joint instabilities. J Magn Reson Imaging 37(6):1486–1492CrossRefGoogle Scholar
  32. 32.
    Faruch Bilfeld M et al (2017) Ultrasound of the coracoclavicular ligaments in the acute phase of an acromioclavicular disjonction: comparison of radiographic, ultrasound and MRI findings. Eur Radiol 27(2):483–490CrossRefGoogle Scholar
  33. 33.
    Sabeti-Aschraf M et al (2011) Ultrasound guidance improves the accuracy of the acromioclavicular joint infiltration: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 19(2):292–295CrossRefGoogle Scholar
  34. 34.
    de Abreu MR et al (2005) Acromioclavicular joint osteoarthritis: comparison of findings derived from MR imaging and conventional radiography. Clin Imaging 29(4):273–277CrossRefGoogle Scholar
  35. 35.
    Chien CGC et al (2015) Ultrasonography leads to accurate diagnosis and management of painful Acromioclavicular joint cyst. Pain Pract 15(7):E72–5CrossRefGoogle Scholar
  36. 36.
    Abdullah R et al (2016) Severe heterotopic ossifications after Rockwood type II acromioclavicular joint injury: a case report. Arch Orthop Trauma Surg 136(3):381–388CrossRefGoogle Scholar
  37. 37.
    Williams M (2016) Diagnostic challenges in acromioclavicular septic arthritis. BMJ Case Rep 2.  https://doi.org/10.1136/bcr-2016-216034. pii:bcr2016216034CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    de la Puente R et al (1999) Post-traumatic and stress-induced osteolysis of the distal clavicle: MR imaging findings in 17 patients. Skeletal Radiol 28(4):202–208CrossRefGoogle Scholar
  39. 39.
    Chauvin NA et al (2012) Magnetic resonance imaging of the pediatric shoulder. Magn Reson Imaging Clin N Am 20(2):327–347CrossRefGoogle Scholar
  40. 40.
    Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250(1):28–38CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • C. Krestan
    • 1
    Email author
  • B. Pretterklieber
    • 2
  • M. Pretterklieber
    • 2
  • J. Kramer
    • 3
  1. 1.Universitätsklinik für Radiologie und Nuklearmedizin, Abteilung für Allgemeine und KinderradiologieMedizinische Universität WienWienÖsterreich
  2. 2.Zentrum für Anatomie und ZellbiologieMedizinische Universität WienWienÖsterreich
  3. 3.Institut für CT & MRT am SchillerparkLinzÖsterreich

Personalised recommendations