Advertisement

Der Radiologe

, Volume 59, Issue 1, pp 35–42 | Cite as

Radiologische Bildgebung zur Bestimmung des individuellen kardiovaskulären Risikos

  • A. D. Ordu
  • K. Rippel
  • L. T. Garthe
  • C. Scheurig-Münkler
  • T. Kröncke
  • F. SchwarzEmail author
Leitthema
  • 127 Downloads

Zusammenfassung

Klinisches/methodisches Problem

In diesem Beitrag soll Rolle der radiologischen Bildgebung zur Bestimmung des individuellen kardiovaskulären Risikos beleuchtet werden.

Radiologische Standardverfahren

Voraussetzung für die Prävention kardiovaskulärer Erkrankungen ist die korrekte Einschätzung des individuellen kardiovaskulären Risikos. Für den koronaren Kalziumscore und die koronare CT-Angiographie liegen umfangreiche Studiendaten vor.

Methodische Innovationen

Die aktuelle Datenlage zum Kalziumscore und zur CT-Angiographie wird zusammengefasst. Der Stellenwert beider Methoden in den einschlägigen Leitlinien wird dargestellt.

Leistungsfähigkeit

Beide Verfahren besitzen einen hohen prognostischen Wert. Dieser übertrifft eine auf Risikofaktoren basierende Abschätzung deutlich, wobei die computertomographische Angiographie (CTA) den größeren inkrementellen Wert hat.

Bewertung

Für symptomatische Patienten beweisen neue Studiendaten eine Outcome-Verbesserung durch Durchführung einer CTA gegenüber herkömmlichem Management.

Empfehlung für die Praxis

Europäische und US-amerikanische Leitlinien empfehlen den Kalziumscore zur Risikostratifizierung asymptomatischer Patienten mit niedrigem bis mittlerem Risikoprofil. Für symptomatische Patienten wird bei niedriger bis mittlerer Vortestwahrscheinlichkeit für eine koronare Herzkrankheit (KHK) eine CTA empfohlen.

Schlüsselwörter

Risikoeinschätzung Koronare Herzerkrankung Kalziumscore Koronare CT-Angiographie Koronarstenosen 

Radiological imaging to assess individual cardiovascular risk

Abstract

Clinical/methodical issue

Radiologic imaging for the assessment of individual cardiovascular risk.

Standard radiological methods

The correct estimation of the individual cardiovascular risk is prerequisite for the prevention of cardiovascular diseases. Here, extensive evidence is available for coronary calcium scans as well as coronary CT angiography (CTA).

Methodical innovations

Summary of the available evidence for the use of calcium score and coronary CTA. Illustration of the significance of both tests in current guidelines.

Performance

Both tests have high prognostic value, surpassing a risk-factor based assessment. In comparison with the calcium score, the CTA has higher incremental value.

Achievements

Results from recent trials confirm an improvement of outcomes in symptomatic patients by performing a CTA compared with standard care.

Practical recommendations

European and US guidelines recommend a calcium score for risk stratification of asymptomatic patients with a low to intermediate risk profile. For symptomatic patients with low to intermediate coronary artery disease pretest probability, a CTA is recommended.

Keywords

Risk assessment Coronary artery disease Atherosclerosis Coronary stenosis Computed tomography angiography 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. D. Ordu, K. Rippel, L. T. Garthe, C. Scheurig-Münkler, T. Kröncke und F. Schwarz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Adamson PD, Hunter A, Williams MC et al (2018) Diagnostic and prognostic benefits of computed tomography coronary angiography using the 2016 National Institute for Health and Care Excellence guidance within a randomised trial. Heart 104:207–214.  https://doi.org/10.1136/heartjnl-2017-311508 CrossRefPubMedGoogle Scholar
  2. 2.
    von Ballmoos MW, Haring B, Juillerat P, Alkadhi H (2011) Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420.  https://doi.org/10.7326/0003-4819-154-6-201103150-00007 CrossRefGoogle Scholar
  3. 3.
    Beller E, Meinel FG, Schoeppe F et al (2018) Predictive value of coronary computed tomography angiography in asymptomatic individuals with diabetes mellitus: systematic review and meta-analysis. J Cardiovasc Comput Tomogr 12:320–328.  https://doi.org/10.1016/j.jcct.2018.04.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Bittencourt MS, Hulten E, Ghoshhajra B et al (2014) Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging 7:282–291.  https://doi.org/10.1161/CIRCIMAGING.113.001047 CrossRefPubMedGoogle Scholar
  5. 5.
    Carr JJ, Jacobs DRJ, Terry JG et al (2017) Association of coronary artery calcium in adults aged 32 to 46 years with incident coronary heart disease and death. JAMA Cardiol 2:391–399.  https://doi.org/10.1001/jamacardio.2016.5493 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Desai RR, Jha S (2013) Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis. AJR Am J Roentgenol 201:W245–W252.  https://doi.org/10.2214/AJR.12.10002 CrossRefPubMedGoogle Scholar
  7. 7.
    Deseive S, Shaw LJ, Min JK et al (2017) Improved 5‑year prediction of all-cause mortality by coronary CT angiography applying the CONFIRM score. Eur Heart J Cardiovasc Imaging 18:286–293.  https://doi.org/10.1093/ehjci/jew195 CrossRefPubMedGoogle Scholar
  8. 8.
    Detrano R, Guerci AD, Carr JJ et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345.  https://doi.org/10.1056/NEJMoa072100 CrossRefPubMedGoogle Scholar
  9. 9.
    Dewey M, Rief M, Martus P et al (2016) Evaluation of computed tomography in patients with atypical angina or chest pain clinically referred for invasive coronary angiography: randomised controlled trial. BMJ 355:i5441CrossRefGoogle Scholar
  10. 10.
    Douglas PS, Hoffmann U, Patel MR et al (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372:1291–1300.  https://doi.org/10.1056/NEJMoa1415516 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dreisbach JG, Nicol ED, Roobottom CA et al (2018) Challenges in delivering computed tomography coronary angiography as the first-line test for stable chest pain. Heart 104:921–927.  https://doi.org/10.1136/heartjnl-2017-311846 CrossRefPubMedGoogle Scholar
  12. 12.
    Fihn SD, Gardin JM, Abrams J et al (2012) 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease. J Am Coll Cardiol 60:e44–e164.  https://doi.org/10.1016/j.jacc.2012.07.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS (1998) Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 280:913–920CrossRefGoogle Scholar
  14. 14.
    Geleijnse ML, Krenning BJ, Soliman OII et al (2007) Dobutamine stress echocardiography for the detection of coronary artery disease in women. Am J Cardiol 99:714–717.  https://doi.org/10.1016/j.amjcard.2006.09.124 CrossRefPubMedGoogle Scholar
  15. 15.
    Genders TSS, Petersen SE, Pugliese F et al (2015) The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis. Ann Intern Med 162:474–484.  https://doi.org/10.7326/M14-0027 CrossRefPubMedGoogle Scholar
  16. 16.
    Gianrossi R, Detrano R, Mulvihill D et al (1989) Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80:87–98CrossRefGoogle Scholar
  17. 17.
    Goff DCJ, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2935–2959.  https://doi.org/10.1016/j.jacc.2013.11.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Greenwood JP, Ripley DP, Berry C et al (2016) Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or NICE guidelines on subsequent unnecessary angiography rates: the CE-MARC 2 randomized clinical trial. JAMA 316:1051–1060.  https://doi.org/10.1001/jama.2016.12680 CrossRefPubMedGoogle Scholar
  19. 19.
    Hecht H, Blaha MJ, Berman DS et al (2017) Clinical indications for coronary artery calcium scoring in asymptomatic patients: expert consensus statement from the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 11:157–168.  https://doi.org/10.1016/j.jcct.2017.02.010 CrossRefPubMedGoogle Scholar
  20. 20.
    Heijenbrok-Kal MH, Fleischmann KE, Hunink MGM (2007) Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J 154:415–423.  https://doi.org/10.1016/j.ahj.2007.04.061 CrossRefPubMedGoogle Scholar
  21. 21.
    Hou Z, Lu B, Gao Y et al (2012) Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging 5:990–999.  https://doi.org/10.1016/j.jcmg.2012.06.006 CrossRefPubMedGoogle Scholar
  22. 22.
    Jaarsma C, Leiner T, Bekkers SC et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-anal. J Am Coll Cardiol 59:1719–1728.  https://doi.org/10.1016/j.jacc.2011.12.040 CrossRefGoogle Scholar
  23. 23.
    Johnson C, Khalilzadeh O, Novelline RA, Choy G (2014) Coronary artery calcification is often not reported in pulmonary CT angiography in patients with suspected pulmonary embolism: an opportunity to improve diagnosis of acute coronary syndrome. AJR Am J Roentgenol 202:725–729.  https://doi.org/10.2214/AJR.13.11326 CrossRefPubMedGoogle Scholar
  24. 24.
    Kwok Y, Kim C, Grady D et al (1999) Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol 83:660–666CrossRefGoogle Scholar
  25. 25.
    Mc Ardle BA, Dowsley TF, DeKemp RA et al (2012) Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. J Am Coll Cardiol 60:1828–1837.  https://doi.org/10.1016/j.jacc.2012.07.038 CrossRefPubMedGoogle Scholar
  26. 26.
    Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 34:2949–3003CrossRefGoogle Scholar
  27. 27.
    Motwani M, Dey D, Berman DS et al (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38:500–507.  https://doi.org/10.1093/eurheartj/ehw188 CrossRefPubMedGoogle Scholar
  28. 28.
    Mowatt G, Cook JA, Hillis GS et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94:1386–1393.  https://doi.org/10.1136/hrt.2008.145292 CrossRefPubMedGoogle Scholar
  29. 29.
    Muhlestein JB, Lappe DL, Lima JAC et al (2014) Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA 312:2234–2243.  https://doi.org/10.1001/jama.2014.15825 CrossRefPubMedGoogle Scholar
  30. 30.
    Munden RF, Carter BW, Chiles C et al (2018) Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR Incidental Findings Committee. J Am Coll Radiol 15:1087–1096.  https://doi.org/10.1016/j.jacr.2018.04.029 CrossRefPubMedGoogle Scholar
  31. 31.
    Nadjiri J, Hausleiter J, Jahnichen C et al (2016) Incremental prognostic value of quantitative plaque assessment in coronary CT angiography during 5 years of follow up. J Cardiovasc Comput Tomogr 10:97–104.  https://doi.org/10.1016/j.jcct.2016.01.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Nandalur KR, Dwamena BA, Choudhri AF et al (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50:1343–1353.  https://doi.org/10.1016/j.jacc.2007.06.030 CrossRefPubMedGoogle Scholar
  33. 33.
    Newby DE, Adamson PD, Berry C et al (2018) Coronary CT angiography and 5‑year risk of myocardial infarction. N Engl J Med 379:924–933.  https://doi.org/10.1056/NEJMoa1805971 CrossRefPubMedGoogle Scholar
  34. 34.
    Park H‑B, Lee BK, Shin S et al (2015) Clinical feasibility of 3D automated coronary atherosclerotic plaque quantification algorithm on coronary computed tomography angiography: comparison with intravascular ultrasound. Eur Radiol 25:3073–3083.  https://doi.org/10.1007/s00330-015-3698-z CrossRefPubMedGoogle Scholar
  35. 35.
    Patel MR, Dai D, Hernandez AF et al (2014) Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J 167:846–852.e2.  https://doi.org/10.1016/j.ahj.2014.03.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur J Prev Cardiol 23:NP1–NP96.  https://doi.org/10.1177/2047487316653709 CrossRefPubMedGoogle Scholar
  37. 37.
    van Rosendael AR, Maliakal G, Kolli KK et al (2018) Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr 12:204–209.  https://doi.org/10.1016/j.jcct.2018.04.011 CrossRefPubMedGoogle Scholar
  38. 38.
    Rozanski A, Gransar H, Shaw LJ et al (2011) Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol 57:1622–1632.  https://doi.org/10.1016/j.jacc.2011.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Silverman MG, Blaha MJ, Krumholz HM et al (2014) Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J 35:2232–2241.  https://doi.org/10.1093/eurheartj/eht508 CrossRefPubMedGoogle Scholar
  40. 40.
    Timmis A, Roobottom CA (2017) National Institute for Health and Care Excellence updates the stable chest pain guideline with radical changes to the diagnostic paradigm. Heart 103:982–986.  https://doi.org/10.1136/heartjnl-2015-308341 CrossRefPubMedGoogle Scholar
  41. 41.
    Villines TC, Hulten EA, Shaw LJ et al (2011) Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography. J Am Coll Cardiol 58:2533–2540.  https://doi.org/10.1016/j.jacc.2011.10.851 CrossRefPubMedGoogle Scholar
  42. 42.
    Vorre MM, Abdulla J (2013) Diagnostic accuracy and radiation dose of CT coronary angiography in atrial fibrillation: systematic review and meta-analysis. Radiology 267:376–386.  https://doi.org/10.1148/radiol.13121224 CrossRefPubMedGoogle Scholar
  43. 43.
    Xie JX, Cury RC, Leipsic J et al (2018) The Coronary Artery Disease-Reporting And Data System (CAD-RADS): prognostic and clinical implications associated with standardized coronary computed tomography angiography reporting. JACC Cardiovasc Imaging 11:78–89.  https://doi.org/10.1016/j.jcmg.2017.08.026 CrossRefPubMedGoogle Scholar
  44. 44.
    Confirm Risk Calculator. http://www.ctconfirm.org/risk/. Zugegriffen: 15.10.2018
  45. 45.
    National Institute for Health and Clinical Excellence (2016) Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin (update). Clinical guideline [CG95]. National Institute for Health and Clinical Excellence, LondonGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Diagnostische und Interventionelle Radiologie und NeuroradiologieKlinikum AugsburgAugsburgDeutschland

Personalised recommendations