Advertisement

Der Radiologe

, Volume 58, Supplement 1, pp 14–19 | Cite as

Diffusion-weighted breast imaging

  • K. Deike-Hofmann
  • T. Kuder
  • F. König
  • D. Paech
  • C. Dreher
  • S. Delorme
  • H.‑P. Schlemmer
  • S. Bickelhaupt
Review
  • 193 Downloads

Abstract

Magnetic resonance imaging (MRI) of the breast represents one of the most sensitive imaging modalities in breast cancer detection. Diffusion-weighted imaging (DWI) is a sequence variation introduced as a complementary MRI technique that relies on mapping the diffusion process of water molecules thereby providing additional information about the underlying tissue. Since water diffusion is more restricted in most malignant tumors than in benign ones owing to the higher cellularity of the rapidly proliferating neoplasia, DWI has the potential to contribute to the identification and characterization of suspicious breast lesions. Thus, DWI might increase the diagnostic accuracy of breast MRI and its clinical value. Future applications including optimized DWI sequences, technical developments in MR devices, and the application of radiomics/artificial intelligence algorithms may expand the potential of DWI in breast imaging beyond its current supplementary role.

Keywords

Breast neoplasms Diffusion magnetic resonance imaging Diagnostic imaging Image interpretation, computer-assisted Classification 

Diffusionsgewichtete MRT der Brust

Zusammenfassung

Die Magnetresonanztomographie (MRT) der weiblichen Brust ist eines der sensitivsten bildgebenden Verfahren in der Brustkrebsdiagnostik. Die diffusionsgewichtete MRT (DWI) ist eine MRT-Sequenz, die die Bewegung von Wassermolekülen im Untersuchungsgebiet erfasst. Da diese in den meisten malignen Tumoren eingeschränkt ist, kann die DWI einen zusätzlichen Beitrag zur Identifikation und Charakterisierung von auffälligen Brustläsionen liefern und so perspektivisch den diagnostischen Stellenwert der MRT in der Brustkrebsdiagnostik weiter erhöhen. Zukünftige Entwicklungen im Bereich der Sequenzoptimierung, MR-Gerätetechnik und der intelligenten Softwarealgorithmen haben das Potenzial, die Rolle der DWI in der Brustbildgebung weiter zu steigern.

Schlüsselwörter

Neoplasien der Brust Diffusions-gewichtete MRT Diagnostische Bildgebung Computer-unterstützte Bildinterpretation Klassifikation 

Notes

Compliance with ethical guidelines

Conflict of interest

K. Deike-Hofmann, T. Kuder, F. König, D. Paech, C. Dreher, S. Delorme, H.-P. Schlemmer, and S. Bickelhaupt declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

The supplement containing this article is not sponsored by industry.

References

  1. 1.
    Fidler MM, Bray F, Soerjomataram I (2018) The global cancer burden and human development: a review. Scand J Public Health 46(1):27–36PubMedCrossRefGoogle Scholar
  2. 2.
    Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46PubMedCrossRefGoogle Scholar
  3. 3.
    Hiom SC (2015) Diagnosing cancer earlier: reviewing the evidence for improving cancer survival: The National Awareness and Early Diagnosis Initiative in England: assessing the evidence 5 years on. Br J Cancer 112(Suppl 1):S1–S5PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18(7):1307–1318PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16(2):172–178PubMedCrossRefGoogle Scholar
  6. 6.
    Bogner W, Gruber S, Pinker K, Grabner G, Stadlbauer A, Weber M et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253(2):341–351PubMedCrossRefGoogle Scholar
  7. 7.
    Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2009) Quantitative Diffusion-Weighted Imaging as an Adjunct to Conventional Breast MRI for Improved Positive Predictive Value. Am J Roentgenol 193(6):1716–1722CrossRefGoogle Scholar
  8. 8.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedCrossRefGoogle Scholar
  9. 9.
    Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440PubMedCrossRefGoogle Scholar
  10. 10.
    Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Phys 19:371–381CrossRefGoogle Scholar
  11. 11.
    Laun FB, Fritzsche KH, Kuder TA, Stieltjes B (2011) Einführung in die Grundlagen und Techniken der Diffusionsbildgebung. Radiologe 51(3):170–179PubMedCrossRefGoogle Scholar
  12. 12.
    Jones DK (2011) Diffusion MRI: Theory, methods, and applications. Oxford University Press, OxfordGoogle Scholar
  13. 13.
  14. 14.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292CrossRefGoogle Scholar
  15. 15.
    Stadlbauer A, Bernt R, Gruber S, Bogner W, Pinker K, van der Riet W et al (2009) Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. Eur Radiol 19(10):2349–2356PubMedCrossRefGoogle Scholar
  16. 16.
    Bickelhaupt S, Paech D, Laun FB, Steudle F, Kuder TA, Mlynarska A et al (2017) Maximum intensity breast diffusion MRI for BI-RADS 4 lesions detected on X‑ray mammography. Clin Radiol.  https://doi.org/10.1016/j.crad.2017.05.017 PubMedCrossRefGoogle Scholar
  17. 17.
    Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EE (2017) Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging 45(2):337–355PubMedCrossRefGoogle Scholar
  18. 18.
    Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275(3):783–791PubMedCrossRefGoogle Scholar
  19. 19.
    Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W et al (2015) High-signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast agent gadobutrol. Invest Radiol 50(12):805–810PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S (2017) Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology 283(2):361–370PubMedCrossRefGoogle Scholar
  21. 21.
    Thomassin-Naggara I, De Bazelaire C, Chopier J, Bazot M, Marsault C, Trop I (2013) Diffusion-weighted MR imaging of the breast: advantages and pitfalls. Eur J Radiol 82(3):435–443PubMedCrossRefGoogle Scholar
  22. 22.
    Chen L, Liu M, Bao J, Xia Y, Zhang J, Zhang L et al (2013) The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS ONE 8(11):e79008PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Shin HJ, Kim SH, Lee HJ, Gong G, Baek S, Chae EY et al (2016) Tumor apparent diffusion coefficient as an imaging biomarker to predict tumor aggressiveness in patients with estrogen-receptor-positive breast cancer. NMR Biomed 29(8):1070–1078PubMedCrossRefGoogle Scholar
  24. 24.
    Surov A, Meyer HJ, Wienke A (2017) Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 8(35):59492–59499PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Steven AJ, Zhuo J, Melhem ER (2013) Diffusion Kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am J Roentgenol 202(1):W26–W33CrossRefGoogle Scholar
  26. 26.
    Bickelhaupt S, Jaeger PF, Laun FB, Lederer W, Daniel H, Kuder TA et al (2018) Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology 287(3):761–770.  https://doi.org/10.1148/radiol.2017170273 PubMedCrossRefGoogle Scholar
  27. 27.
    Sun K, Chen X, Chai W, Fei X, Fu C, Yan X et al (2015) Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors. Radiology 277(1):46–55.  https://doi.org/10.1148/radiol.15141625 PubMedCrossRefGoogle Scholar
  28. 28.
    Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE (2014) Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol 24(11):2835–2847PubMedCrossRefGoogle Scholar
  29. 29.
    Nogueira L, Brandao S, Nunes RG, Ferreira HA, Loureiro J, Ramos I (2015) Breast DWI at 3 T: influence of the fat-suppression technique on image quality and diagnostic performance. Clin Radiol 70(3):286–294PubMedCrossRefGoogle Scholar
  30. 30.
    Chen X, Li WL, Zhang YL, Wu Q, Guo YM, Bai ZL (2010) Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 10:693PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Baltzer PAT, Bickel H, Spick C, Wengert G, Woitek R, Kapetas P et al (2017) Potential of noncontrast magnetic resonance imaging with diffusion-weighted imaging in characterization of breast lesions: intraindividual comparison with dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol.  https://doi.org/10.1097/RLI.0000000000000433 CrossRefGoogle Scholar
  32. 32.
    Bickelhaupt S, Laun F, Tesdorff J, Lederer W, Daniel H, Stieber A et al (2016) Fast and non-invasive characterization of suspicious lesions detected on X‑ray breast cancer screening—capability of diffusion weighted MRI with maximum intensity projections. Radiology 278(3):689–697PubMedCrossRefGoogle Scholar
  33. 33.
    Trimboli RM, Verardi N, Cartia F, Carbonaro LA, Sardanelli F (2014) Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study. AJR Am J Roentgenol 203(3):674–681PubMedCrossRefGoogle Scholar
  34. 34.
    Kang JW, Shin HJ, Shin KC, Chae EY, Choi WJ, Cha JH et al (2017) Unenhanced magnetic resonance screening using fused diffusion-weighted imaging and maximum-intensity projection in patients with a personal history of breast cancer: role of fused DWI for postoperative screening. Breast Cancer Res Treat 165(1):119–128PubMedCrossRefGoogle Scholar
  35. 35.
    Telegrafo M, Rella L, Stabile Ianora AA, Angelelli G, Moschetta M (2015) Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions. Magnetic Resonance Imaging, 33, 951–955.  https://doi.org/10.1016/j.mri.2015.06.002 PubMedCrossRefGoogle Scholar
  36. 36.
    Belli P, Bufi E, Bonatesta A, Patrolecco F, Padovano F, Giuliani M et al (2016) Unenhanced breast magnetic resonance imaging: detection of breast cancer. Eur Rev Med Pharmacol Sci 20:4220–4229PubMedGoogle Scholar
  37. 37.
    Baltzer PAT, Benndorf M, Dietzel M, Gajda M, Camara O, Kaiser WA (2010) Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. European Radiology, 20, 1101–1110.  https://doi.org/10.1007/s00330-009-1654-5 PubMedCrossRefGoogle Scholar
  38. 38.
    Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M (2007) Detecting Breast Cancer with Non-contrast MR Imaging: Combining Diffusion-weighted and STIR Imaging. Magn Reson Med Sci 6(1):21–27PubMedCrossRefGoogle Scholar
  39. 39.
    Mori N, Ota H, Mugikura S, Takasawa C, Ishida T, Watanabe G et al (2015) Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index. Radiology 274(1):66–73PubMedCrossRefGoogle Scholar
  40. 40.
    Rahbar H, Partridge SC, Eby PR, Demartini WB, Gutierrez RL, Peacock S et al (2011) Characterization of ductal carcinoma in situ on diffusion weighted breast MRI. Eur Radiol 21(9):2011–2019PubMedCrossRefGoogle Scholar
  41. 41.
    Xing H, Song CL, Li WJ (2016) Meta analysis of lymph node metastasis of breast cancer patients: Clinical value of DWI and ADC value. Eur J Radiol 85(6):1132–1137PubMedCrossRefGoogle Scholar
  42. 42.
    Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139PubMedCrossRefGoogle Scholar
  43. 43.
    Bickelhaupt S, Paech D, Kickingereder P, Steudle F, Lederer W, Daniel H et al (2017) Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J Magn Reson Imaging 2(10):25606Google Scholar
  44. 44.
    Dong Y, Feng Q, Yang W, Lu Z, Deng C, Zhang L et al (2018) Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol 28(2):582–591PubMedCrossRefGoogle Scholar
  45. 45.
    Schmitt B, Trattnig S, Schlemmer H‑P (2012) CEST-imaging: a new contrast in MR-mammography by means of chemical exchange saturation transfer. Eur J Radiol 81(Suppl 1):S144–S146.  https://doi.org/10.1016/S0720-048X(12)70060-8 PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang S, Seiler S, Wang X, Madhuranthakam AJ, Keupp J, Knippa EE et al (2018) CEST-Dixon for human breast lesion characterization at 3 T: a preliminary study. Magn Reson Med 80:895.  https://doi.org/10.1002/mrm.27079 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • K. Deike-Hofmann
    • 1
  • T. Kuder
    • 2
  • F. König
    • 1
  • D. Paech
    • 1
  • C. Dreher
    • 1
  • S. Delorme
    • 1
  • H.‑P. Schlemmer
    • 1
  • S. Bickelhaupt
    • 1
  1. 1.Department of RadiologyGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of Medical PhysicsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations