Advertisement

Der Radiologe

, Volume 58, Issue 8, pp 722–729 | Cite as

„Gross tumor volume“ (GTV)

Grundsätze, Methoden, Registrierung, Grenzen
  • C. Thieke
Leitthema

Zusammenfassung

Klinisches Problem

Das „Gross tumor volume“ (GTV) bezeichnet den makroskopischen Tumor und damit das zentrale Zielvolumen, von dessen korrekter Identifizierung der Erfolg einer Strahlentherapie maßgeblich abhängt.

Radiologische Standardverfahren und methodische Innovationen

In der Präzisionsstrahlentherapie wird das GTV auf einer 3‑D-Schichtbildgebung konturiert. Basis ist die Computertomographie (CT), die oft durch weitere diagnostische Informationen, z. B. Magnetresonanztomographie (MRT) und Positronenemissionstomographie (PET), ergänzt wird. Aktuelle Entwicklungen wie Dual-Energy-CT, funktionelle MRT-Bildgebung und spezifische PET-Tracer erlauben eine zunehmend bessere Differenzierung des Tumors von umliegendem Normalgewebe.

Bewertung

Das Konzept des GTV ist ein zentraler Bestandteil der Strahlentherapie und Grundlage der Bestrahlungsplanung. In Studien zur Interobserver-Variabilität werden die Auswirkungen unterschiedlicher diagnostischer Techniken, Interventionen und Observer-Qualifikationen untersucht und Ansätze zur stetigen Verbesserung der praktischen Umsetzung abgeleitet. Dabei stellt jede Tumorentität spezifische Herausforderungen, von denen einige hier beispielhaft vorgestellt werden.

Schlüsselwörter

Strahlentherapie Zielvolumina Makroskopischer Tumor Registrierung Interobserver-Variabilität 

Gross tumor volume (GTV)

Basics, methods, registration, limitations

Abstract

Clinical Issue

Gross tumor volume (GTV) denotes the macroscopic tumor which as the central target volume needs to be correctly identified for successful radiotherapy.

Standard radiological methods and methodical innovations

In precision radiotherapy, GTV is outlined on 3D tomographic images. The basis is computed tomography (CT), which is often supplemented by additional diagnostic information, e. g. magnetic resonance imaging (MRI) and positron emission tomography (PET). New developments like dual-energy CT, functional MRI and specific PET tracers facilitate a continuously better differentiation between tumor and surrounding normal tissue.

Achievements

The concept of GTV is a central part of radiotherapy and the basis of radiation treatment planning. Studies regarding the interobserver variability are performed in order to analyze the impact of different imaging modalities, interventions and observer qualifications, and to deduce steps to constantly improve the practical realization. Each tumor entity presents specific challenges which are demonstrated here using examples.

Keywords

Radiotherapy Target volumes Macroscopic tumor Registration Interobserver variability 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Thieke gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    International Commission on Radiation Units and Measurements (1993) Prescribing, recording and reporting photon beam therapy. ICRU report 50. ICRU, BethesdaGoogle Scholar
  2. 2.
    International Commission on Radiation Units and Measurements (2010) International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU Report 83. ICRU, BethesdaGoogle Scholar
  3. 3.
    Ho YW, Wong WK, Yu SK, Lam WW, Geng H (2012) Accuracy in contouring of small and low contrast lesions: comparison between diagnostic quality computed tomography scanner and computed tomography simulation scanner–A phantom study. Med Dosim 37(4):401–405.  https://doi.org/10.1016/j.meddos.2012.03.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Ramm U, Damrau M, Mose S, Manegold KH, Rahl CG, Böttcher HD (2001) Influence of CT contrast agents on dose calculations in a 3D treatment planning system. Phys Med Biol 46(10):2631–2635CrossRefPubMedGoogle Scholar
  5. 5.
    Giantsoudi D, De Man B, Verburg J, Trofimov A, Jin Y, Wang G, Gjesteby L, Paganetti H (2017) Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol 62(8):R49–R80.  https://doi.org/10.1088/1361-6560/aa5293 CrossRefPubMedGoogle Scholar
  6. 6.
    van Elmpt W, Landry G, Das M, Verhaegen F (2016) Dual energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 119(1):137–144.  https://doi.org/10.1016/j.radonc.2016.02.026 CrossRefPubMedGoogle Scholar
  7. 7.
    Weygand J, Fuller CD, Ibbott GS, Mohamed AS, Ding Y, Yang J, Hwang KP, Wang J (2016) Spatial precision in magnetic resonance imaging-guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys 95(4):1304–1316.  https://doi.org/10.1016/j.ijrobp.2016.02.059 CrossRefPubMedGoogle Scholar
  8. 8.
    Christiansen RL, Jensen HR, Brink C (2017) Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer. Acta Oncol 56(6):787–791.  https://doi.org/10.1080/0284186X.2017.1290275 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang H, Chandarana H, Block KT, Vahle T, Fenchel M, Das IJ (2017) Dosimetric evaluation of synthetic CT for magnetic resonance-only based radiotherapy planning of lung cancer. Radiat Oncol 12(1):108.  https://doi.org/10.1186/s13014-017-0845-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brock KK, Mutic S, McNutt TR, Li H, Kessler ML (2017) Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 44(7):e43–e76.  https://doi.org/10.1002/mp.12256 CrossRefPubMedGoogle Scholar
  11. 11.
    Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol 179(1):21–30.  https://doi.org/10.1007/s00066-003-0976-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Vinod SK, Jameson MG, Min M, Holloway LC (2016) Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiother Oncol 121(2):169–179.  https://doi.org/10.1016/j.radonc.2016.09.009 CrossRefPubMedGoogle Scholar
  13. 13.
    Peulen H, Belderbos J, Guckenberger M, Hope A, Grills I, van Herk M, Sonke JJ (2015) Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy. Radiother Oncol 114(3):361–366.  https://doi.org/10.1016/j.radonc.2015.02.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51(4):923–931CrossRefPubMedGoogle Scholar
  15. 15.
    Schimek-Jasch T, Troost EG, Rücker G, Prokic V, Avlar M, Duncker-Rohr V, Mix M, Doll C, Grosu AL, Nestle U (2015) A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: reducing the interobserver variability in multicentre clinical studies. Strahlenther Onkol 191(6):525–533.  https://doi.org/10.1007/s00066-015-0812-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Giraud P, Elles S, Helfre S, De Rycke Y, Servois V, Carette MF, Alzieu C, Bondiau PY, Dubray B, Touboul E, Housset M, Rosenwald JC, Cosset JM (2002) Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 62(1):27–36CrossRefPubMedGoogle Scholar
  17. 17.
    Rogers L, Jensen R, Perry A (2005) Chasing your dural tail: factors predicting local tumor control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas: in regard to DiBiase et al. (Int J Radiat Oncol Biol Phys 2004;60:1515–1519). Int J Radiat Oncol Biol Phys 62(2):616–618.  https://doi.org/10.1016/j.ijrobp.2005.02.026 (author reply 618–9)CrossRefPubMedGoogle Scholar
  18. 18.
    Maclean J, Fersht N, Short S (2014) Controversies in radiotherapy for meningioma. Clin Oncol (R Coll Radiol) 26(1):51–64.  https://doi.org/10.1016/j.clon.2013.10.001 CrossRefGoogle Scholar
  19. 19.
    Jenkinson MD, Javadpour M, Haylock BJ, Young B, Gillard H, Vinten J, Bulbeck H, Das K, Farrell M, Looby S, Hickey H, Preusser M, Mallucci CL, Hughes D, Gamble C, Weber DC (2015) The ROAM/EORTC-1308 trial: radiation versus observation following surgical resection of atypical meningioma: study protocol for a randomised controlled trial. Trials 16:519.  https://doi.org/10.1186/s13063-015-1040-3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, Mäcke HR, Hofmann M, Debus J, Haberkorn U (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42(7):1053–1056PubMedGoogle Scholar
  21. 21.
    Gehler B, Paulsen F, Oksüz MO, Hauser TK, Eschmann SM, Bares R, Pfannenberg C, Bamberg M, Bartenstein P, Belka C, Ganswindt U (2009) [68 Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol 4:56.  https://doi.org/10.1186/1748-717X-4-56 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S, Lung Group and the Radiation Oncology Group of the European Organization for Research and Treatment of Cancer (EORTC) (2017) European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124(1):1–10.  https://doi.org/10.1016/j.radonc.2017.06.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Nestle U, De Ruysscher D, Ricardi U, Geets X, Belderbos J, Pöttgen C, Dziadiuszko R, Peeters S, Lievens Y, Hurkmans C, Slotman B, Ramella S, Faivre-Finn C, McDonald F, Manapov F, Putora PM, LePéchoux C, Van Houtte P (2018) ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer. Radiother Oncol 127(1):1–5.  https://doi.org/10.1016/j.radonc.2018.02.023 CrossRefPubMedGoogle Scholar
  24. 24.
    Chi A, Nguyen NP (2014) The utility of positron emission tomography in the treatment planning of image-guided radiotherapy for non-small cell lung cancer. Front Oncol 4:273.  https://doi.org/10.3389/fonc.2014.00273 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wielpütz M, Kauczor HU (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18(4):344–353.  https://doi.org/10.4261/1305-3825.DIR.5365-11.0 PubMedCrossRefGoogle Scholar
  26. 26.
    Thomas L, Lapa C, Bundschuh RA, Polat B, Sonke JJ, Guckenberger M (2015) Tumour delineation in oesophageal cancer – a prospective study of delineation in PET and CT with and without endoscopically placed clip markers. Radiother Oncol 116(2):269–275.  https://doi.org/10.1016/j.radonc.2015.07.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Klinikum der Universität MünchenLMU MünchenMünchenDeutschland

Personalised recommendations