Advertisement

Der Radiologe

, Volume 56, Issue 11, pp 976–982 | Cite as

Degenerative Kleinhirnerkrankungen und Differenzialdiagnosen

  • W. ReithEmail author
  • S. Roumia
  • P. Dietrich
Leitthema
  • 602 Downloads

Zusammenfassung

Klinisches/methodisches Problem

Klinisch imponieren Kleinhirnsyndrome durch Ataxie, Dysarthrie, Dysmetrie, Intentionstremor und Augenbewegungsstörungen.

Radiologische Standardverfahren

Neben der Anamnese und klinischen Untersuchung ist die Bildgebung v. a. wichtig um andere Erkrankungen wie Hydrozephalus und Multiinfarktdemenz von degenerativen Kleinhirnerkrankungen zu differenzieren. Zu den degenerativen Erkrankungen mit Kleinhirnbeteiligung gehören der Morbus Parkinson, die Multisystematrophie sowie weitere Erkrankungen einschließlich der spinozerebellären Ataxien.

Bewertung

Neben der MRT sind auch nuklearmedizinische Untersuchungen zur Differenzierung hilfreich.

Empfehlung für die Praxis

Axiale Fluid-attenuated-inversion-recovery(FLAIR)- und T2-gewichtete Sequenzen können mitunter eine Signalsteigerung im Pons als Ausdruck einer Degeneration der pontinen Neuronen und transversalen Bahnen im Brückenfuß zeigen. Die Bildgebung ist aber v. a. notwendig, um andere Erkrankungen wie Normaldruckhydrozephalus, Multiinfarktdemenz und zerebelläre Läsionen auszuschließen.

Schlüsselwörter

Ataxie Kleinhirnatrophie Morbus Parkinson Neurodegenerative Erkrankungen MRT 

Degenerative cerebellar diseases and differential diagnoses

Abstract

Clinical/methodical issue

Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders.

Standard radiological methods

In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson’s disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia.

Achievements

In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation.

Practical recommendations

Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions.

Keywords

Ataxia Cerebellar atrophy Parkinson’s disease Neurodegenerative diseases Magnetic resonance imaging 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Reith, S. Roumia und P. Dietrich geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Erichsen AK, Koht J, Stray-Pedersen A et al (2009) Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 132:1577–1588CrossRefPubMedGoogle Scholar
  2. 2.
    Deutsche Geselleschaft für Neurologie. Leitlinien für Diagnostik und Therapie in der Neurologie, Kapitel degenerative Erkrankungen, Stand 2012, AWMF-Registriernummer: 030/031Google Scholar
  3. 3.
    Reith W, Mühl-Benninghaus R, Simgen A, Yilmaz U (2014) Keimzell- und embryonale Tumoren. Radiologe 54:772–782Google Scholar
  4. 4.
    Deuschl G, Krack P (1999) Morbus Parkinson. In: Hopf HC, Deuschl G, Diener HC, Reichmann H (Hrsg) Neurologie in Praxis und Klinik, Bd. 2. Thieme, Stuttgart New York, S 49–69Google Scholar
  5. 5.
    Braak H, Ghembremedhin E, Rüb U et al (2004) Stages in the development of Parkinson’s disease-related tissue. Cell Tissue Res 318:121–134CrossRefPubMedGoogle Scholar
  6. 6.
    Reichmann H (2008) Neurodegenrative Erkrankungen. UNI-MED, BremenGoogle Scholar
  7. 7.
    Hughes A, Daniel SE, Kilford L et al (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hughes A, Ben-Shlomo Y, Daniel SE et al (1993) What feasures improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 43:1629–1630CrossRefGoogle Scholar
  9. 9.
    Al-Radaideh AM, Rababah EM (2016) The role of magnetic resonance imaging in the diagnosis of Parkinson’s disease: a review. Clin Imaging 40(5):987–996CrossRefPubMedGoogle Scholar
  10. 10.
    Schmidt KI, Spiegel J, Reith W (2011) Klinische und bildgebende Diagnostik bei Morbus Parkinson und Multisystematrophie. Radiologe 51:273–277CrossRefPubMedGoogle Scholar
  11. 11.
    Haacke E, Cheng N, House M, Liu Q, Neelavalli J, Ogg R et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Butros S, Shuai X, Dai Y, Chen C, Liu M et al (2012) Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging. AJNR Am J Neuroradiol 33:266–273CrossRefPubMedGoogle Scholar
  13. 13.
    Menke R, Jbabdi S, Miller K, Matthews P, Zarei M (2010) Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson’s disease. Neuroimage 52:1175–1180CrossRefPubMedGoogle Scholar
  14. 14.
    Spiegel J, Hellwig D, Samnick S et al (2007) Striatal FP-CIT uptake differs in the subtypes of early Parkinson’s disease. J Neural Transm 114:331–335CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshita M (1998) Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial scintigraphy. J Neurol Sci 155:60–67CrossRefPubMedGoogle Scholar
  16. 16.
    Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P et al (2008) MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246:214–221CrossRefPubMedGoogle Scholar
  17. 17.
    Messina D, Cerasa A, Condino F, Arabia G, Novellino F, Nicoletti G et al (2011) Patterns of brain atrophy in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Parkinsonism Relat Disord 17:172–176CrossRefPubMedGoogle Scholar
  18. 18.
    Boelmans K, Holst B, Hackius M, Finsterbusch J, Gerloff C, Fiehler J et al (2012) Brain iron deposition fingerprints in Parkinson’s disease and progressive supranuclear palsy. Mov Disord 27:421–427CrossRefPubMedGoogle Scholar
  19. 19.
    Seppi K, Poewe W (2010) Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes. Neuroimaging Clin N Am 20:29–55CrossRefPubMedGoogle Scholar
  20. 20.
    Groger A, Chadzynski G, Godau J, Berg D, Klose U (2011) Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson’s disease. Eur Radiol 21:1962–1969CrossRefPubMedGoogle Scholar
  21. 21.
    Rango M, Bonifati C, Bresolin N (2006) Parkinson’s disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 26:283–290CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Klinik für Diagnostische und Interventionelle NeuroradiologieUniversitätsklinikum des SaarlandesHomburg/SaarDeutschland

Personalised recommendations