Der Radiologe

, Volume 55, Issue 11, pp 956–963 | Cite as

Molekulare Ultraschallbildgebung

Chancen für die Klinik
Leitthema

Zusammenfassung

Hintergrund

Die Ultraschallbildgebung mit Kontrastmitteln wird klinisch zunehmend angewendet, v. a. für kardiovaskuläre Fragestellungen und für die Leberdiagnostik. Die Verfügbarkeit molekularer Kontrastmittel und deren beginnende klinische Translation versprechen derzeit neue Möglichkeiten für eine pathomechanistische Diagnostik.

Material und Methoden

Auswertung aktueller Literatur zur Entwicklung molekularer Ultraschallkontrastmittel, von deren Detektionsmethoden und von ihrem Einsatz in präklinischen und klinischen Studien.

Ergebnisse

In der präklinischen Forschung haben sich molekulare Ultraschallkontrastmittel zur Detektion von Inflammation und Angiogenese in den letzten Jahren etabliert und werden kontinuierlich weiterentwickelt. Sie bestehen aus 1–5 µm großen, gasgefüllten Mikrobläschen, deren Gaskern mit einer Hülle aus Lipiden, Proteinen oder Polymeren stabilisiert ist und an die Biomoleküle konjugiert sind, welche die Targetspezifität determinieren. BR55 ist das erste klinisch erprobte Ultraschallkontrastmittel. Es bindet an den Angiogenesemarker Vascular Endothelial Growth Factor Receptor 2 (VEGFR2, Kinase-insert Domain Receptor [KDR]) und wurde in unterschiedlichen präklinischen und klinischen Studien der Phase I und II zur Tumordiagnostik eingesetzt.

Schlussfolgerung

Die molekulare Ultraschallbildgebung zeigt im präklinischen Bereich große Fortschritte und ein breites Anwendungsgebiet. Eine Translation in klinische Anwendungen ist für verschiedene Indikationen vorstellbar und wird mit BR55 derzeit umgesetzt.

Schlüsselwörter

Ultraschallkontrastmittel Inflammation Angiogenese Translation Klinische Anwendung 

Molecular ultrasound imaging

Clinical applications

Abstract

Background

Contrast-enhanced ultrasound imaging is increasingly being used in clinical applications, particularly for cardiovascular and liver diagnostics. In this context the availability of new molecular contrast agents and the initiation of clinical translation promises new options for pathomechanistic diagnostics.

Material and methods

Analysis of the current literature on the development of molecular ultrasound contrast agents, the detection methods as well as the applications in preclinical and clinical studies.

Results

Molecular contrast agents have become established in preclinical research for the detection of inflammation and angiogenesis and have been continuously refined over recent years. They consist of gas filled microbubbles with a diameter of 1–5 µm and the gas core is stabilized by a shell made of lipids, proteins or polymers to which biomolecules are conjugated that determine the target specificity. The agent BR55 is the first clinically evaluated molecular ultrasound contrast agent. It binds to the angiogenesis marker vascular endothelial growth factor receptor 2 (VEGFR2) and has been studied in several preclinical and clinical phase I and II studies on tumor diagnostics and characterization.

Conclusion

Molecular ultrasound imaging is rapidly evolving in preclinical research for a broad field of applications. Translation to clinical practice is conceivable for many indications and is already ongoing for BR55.

Keywords

Ultrasound contrast media Inflammation Angiogenesis Translation Clinical application 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Rix, M. Palmowski und F. Kiessling geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Baetke S, Rix A, Tranquart F et al (2015) VEGFR2-targeted microbubbles for combined functional (Maximum Intensity Over Time) and molecularly targeted ultrasound monitoring of anti-angiogenic therapy effects in squamous cell carcinoma xenografts. Radiology. doi:http://dx.doi.org/10.1148/radiol.2015142899 (ahead of print)Google Scholar
  2. 2.
    Bzyl J, Lederle W, Rix A et al (2011) Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur Radiol 21:1988–1995CrossRefPubMedGoogle Scholar
  3. 3.
    Bzyl J, Palmowski M, Rix A et al (2013) The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55). Eur Radiol 23:468–475CrossRefPubMedGoogle Scholar
  4. 4.
    Chadderdon SM, Belcik JT, Bader L et al (2014) Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation 129:471–478CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Claudon M, Cosgrove D, Albrecht T et al (2008) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – Update 2008. Ultraschall Medizin 29:28–44CrossRefGoogle Scholar
  6. 6.
    Claudon M, Dietrich CF, Choi BI et al (2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver – Update 2012. Ultraschall Medizin 34:11–29Google Scholar
  7. 7.
    Curaj, Wu Z, Fokong S et al (2015) Noninvasive molecular ultrasound monitoring of vessel healing after Intravascular surgical procedures in a Preclinical setup. Arterioscler Thromb Vasc Biol 35(6):1366–1373CrossRefPubMedGoogle Scholar
  8. 8.
    Davidson BP, Chadderdon SM, Belcik JT et al (2014) Ischemic memory imaging in nonhuman primates with Echocardiographic molecular imaging of Selectin expression. J Am Soc Echocardiogr 27:786–793 (e2)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fokong S, Fragoso A, Rix A et al (2013) Ultrasound molecular imaging of E-selectin in tumor vessels using poly n-butyl cyanoacrylate microbubbles covalently coupled to a short targeting peptide. Invest Radiol 48:843–850CrossRefPubMedGoogle Scholar
  10. 10.
    Grouls C, Hatting M, Rix A et al (2013) Liver dysplasia: US molecular imaging with targeted contrast agent enables early assessment. Radiology 267:487–495CrossRefPubMedGoogle Scholar
  11. 11.
    Hyvelin J-M, Tardy I, Bettinger T et al (2014) Ultrasound molecular imaging of transient acute myocardial ischemia with a clinically translatable P- and E-selectin targeted contrast agent: correlation with the expression of selectins. Invest Radiol 49:224–235CrossRefPubMedGoogle Scholar
  12. 12.
    Kaufmann BA, Lewis C, Xie A et al (2007) Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. Eur Heart J 28:2011–2017CrossRefPubMedGoogle Scholar
  13. 13.
    Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284CrossRefPubMedGoogle Scholar
  14. 14.
    Khanicheh E, Mitterhuber M, Xu L et al (2013) Noninvasive ultrasound molecular imaging of the effect of Statins on Endothelial inflammatory phenotype in early atherosclerosis. Plos One 8:1–9CrossRefGoogle Scholar
  15. 15.
    Klibanov AL (2005) Ligand-carrying gas-filled microbubbles: Ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem 16:9–17CrossRefPubMedGoogle Scholar
  16. 16.
    Lindner JR (2002) Detection of inflamed plaques with contrast ultrasound. Am J Cardiol 90:32L–35LCrossRefPubMedGoogle Scholar
  17. 17.
    Lindner JR, Coggins MP, Kaul S et al (2000) Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation 101:668–675CrossRefPubMedGoogle Scholar
  18. 18.
    Lutz AM, Bachawal SV, Drescher CW et al (2014) Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model. Clin Cancer Res 20:1313–1322CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mancini M, Greco A, Salvatore G et al (2013) Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. BMC Med Imaging 13:31 doi:10.1186/1471-2342-13-31\r10.1186/1471-2342-13-31.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Palmowski M, Huppert J, Hauff P et al (2008) Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res 68:7042–7049CrossRefPubMedGoogle Scholar
  21. 21.
    Pochon S, Tardy I, Bussat P et al (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45:89–95CrossRefPubMedGoogle Scholar
  22. 22.
    Pysz MA, Machtaler SB, Seeley ES et al (2015) Vascular Endothelial growth factor receptor type 2–targeted contrast-enhanced US of pancreatic cancer Neovasculature in a genetically engineered mouse model: potential for earlier detection. Radiology 274:790–799CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Reinhardt M, Hauff P, Briel A et al (2005) Sensitive Particle Acoustic Quantification (SPAQ). Invest Radiol 40:2–7PubMedGoogle Scholar
  24. 24.
    Senior R, Becher H, Monaghan M et al (2009) Contrast echocardiography: evidence-based recommendations by European association of Echocardiography. Eur J Echocardiogr 10:194–212CrossRefPubMedGoogle Scholar
  25. 25.
    Siepmann M, Schmitz G, Bzyl J et al (2011) Imaging tumor vascularity by tracing single microbubbles. Ieee Int Ultrason Symp Ius 1906–1908Google Scholar
  26. 26.
    Sorace AG, Saini R, Mahoney M, Hoyt K (2012) Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med 31:1543–1550PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tardy I, Pochon S, Theraulaz M et al (2010) Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol 45:573–578CrossRefPubMedGoogle Scholar
  28. 28.
    Tlaxca JL, Rychak JJ, Ernst PB et al (2013) Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn’s disease. J Control Release 165:216–225CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Unnikrishnan S, Klibanov L (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol 199:292–299CrossRefGoogle Scholar
  30. 30.
    Wang H, Machtaler S, Bettinger T et al (2013) Molecular imaging of inflammation in inflammatory bowel disease with a clinically translatable dual-selectin-targeted US contrast agent: comparison with FDG PET/CT in a mouse model. Radiology 267:818–829CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wei K, Jayaweera R, Firoozan S et al (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483CrossRefPubMedGoogle Scholar
  32. 32.
    Wei S, Fu N, Sun Y et al (2014) Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med Biol 40:1250–1259CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao S, Borden M, Bloch SH et al (2004) Radiation-force assisted targeting facilitates ultrasonic molecular imaging. Mol Imaging 3(3):135–148CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Experimentelle Molekulare BildgebungAachenDeutschland

Personalised recommendations