Der Radiologe

, Volume 55, Issue 10, pp 859–867 | Cite as

Kyphoplastie kombiniert mit intraoperativer Radiotherapie (Kypho-IORT)

Therapiealternative für den oligometastasierten Patienten mit Wirbelsäulenmetastasen
  • F. Bludau
  • T. Reis
  • F. Schneider
  • S. Clausen
  • F. Wenz
  • U. Obertacke
Leitthema

Zusammenfassung

Hintergrund

Durch verbesserte onkologische Therapie kommt es nicht nur zu einer deutlich verbesserten Überlebenszeit, sondern auch zu einer Zunahme an ossären Metastasen bei Tumorpatienten. Die häufigste Lokalisation stellt dabei die Wirbelsäule dar, die Folge können Instabilität, Schmerz und neurologische Defizite sein. Das interdisziplinäre Tumormanagement der Wirbelsäule umfasste bisher insbesondere die Stabilisierung und anschließende Bestrahlung der Metastasen. Eine Reduktion der Eingriffsschwere und Morbidität sind ebenso wie die Beachtung und Erhalt der Autarkie des Patienten wichtige Zielparameter bei diesen palliativen Patienten.

Methode und Resultate

Die Kyphoplastie kombiniert mit intraoperativer Radiotherapie (Kypho-IORT) stellt eine weitere, moderne Behandlungsoption für Patienten dar, bei welcher minimal-invasiv eine lokale Hochdosisbestrahlung im Wirbelkörper mittels niedrigenergetischen Röntgenstrahlen (50 kV) transpedikulär vorgenommen wird. Unmittelbar anschließend erfolgt die Stabilisierung des Wirbelkörpers über das gleiche Portal mittels Kyphoplastie, sodass eine einzeitige Prozedur mit guter Schmerzreduktion und guter lokaler Tumorkontrolle erzielt werden kann. Neben der Präsentation klinischer Daten werden die Indikationsstellungen zur Kypho-IORT in diesem Artikel kritisch dargestellt und mit anderen Therapieoptionen verglichen. Methodische Verbesserungen und Möglichkeiten zur weiteren Individualisierung der Therapie werden aufgezeigt.

Schlussfolgerung

Die Kypho-IORT ist eine neue Behandlungsoption für Patienten mit Wirbelsäulenmetastasen. Nach über 100 erfolgreichen Anwendungen sind technische Machbarkeit, Patientensicherheit und gute lokale Tumorkontrolle dargelegt, sodass eine Anwendung im klinischen Alltag möglich und sinnvoll erscheint. Eine Phase-II-Dosiseskalationsstudie ist abgeschlossen und zur Publikation eingereicht, eine Phase-III-Studie zum Vergleich mit konventioneller Bestrahlung ist begonnen worden.

Schlüsselwörter

Strahlentherapie Kyphoplastie Wirbelkörpermetastasen Palliative Behandlung Intrabeam® 

Kyphoplasty combined with intraoperative radiotherapy (Kypho-IORT)

Alternative therapy for patients with oligometastatic spinal metastases

Abstract

Background

Due to a more effective systemic therapy the survival of patients suffering from malignant tumors has been significantly improved but a longer life span is often associated with a higher incidence of osseous metastases. The majority of these metastases are localized in the spine causing pain, instability and neurological impairments. The interdisciplinary management of spinal metastases previously consisted of stabilization followed by fractionated external body radiation therapy. A reduction in procedural severity and morbidity as well as consideration of self-sufficiency and hospitalization time are important target parameters for these palliative patients.

Method and results

Kyphoplasty combined with intraoperative radiotherapy (Kypho-IORT) is one of several modern treatment options, which involves a minimally invasive procedure with local high-dose transpedicular irradiation of the spine with low-energy (50 kV) X-rays. Immediately following irradiation, stabilization of the spine is carried out using kyphoplasty via the same access route so that a single stage procedure with excellent pain reduction and good local tumor control can be achieved. This article presents clinical data for this procedure and the different fields of indications are critically reviewed and compared to other therapy options. Methodological improvements and options for further individualization of therapy are demonstrated.

Conclusion

The Kypho-IORT procedure is a safe, feasible and beneficial modern treatment option for instant stabilization and local tumor control in patients with spinal metastases. More than 100 operations have been successfully performed so that the method can be deemed suitable for inclusion in the clinical routine. A phase II dose escalation study has now been completed and submitted for publication and a 2-arm non-inferiority trial (phase III study) for comparison with conventional irradiation is in progress.

Keywords

Radiation therapy Kyphoplasty Spinal metastases Palliative treatment Intrabeam® 

Literatur

  1. 1.
    Wenz F et al (2010) Kypho-IORT – a novel approach of intraoperative radiotherapy during kyphoplasty for vertebral metastases. Radiat Oncol 5:11PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Coleman MP et al (2011) Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 377(9760):127–138PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Roghmann F et al (2015) The burden of skeletal-related events in patients with prostate cancer and bone metastasis. Urol Oncol 33(1):17 e9–17 e18CrossRefPubMedGoogle Scholar
  4. 4.
    Oefelein MG et al (2002) Skeletal fractures negatively correlate with overall survival in men with prostate cancer. J Urol 168(3):1005–1007CrossRefPubMedGoogle Scholar
  5. 5.
    Hagiwara M, Delea TE, Chung K (2014) Healthcare costs associated with skeletal-related events in breast cancer patients with bone metastases. J Med Econ 17(3):223–230CrossRefPubMedGoogle Scholar
  6. 6.
    Yuh WT et al (1996) Anatomic distribution of metastases in the vertebral body and modes of hematogenous spread. Spine (phila Pa 1976) 21(19):2243–2250CrossRefGoogle Scholar
  7. 7.
    Nathoo N et al (2011) History of the vertebral venous plexus and the significant contributions of Breschet and Batson. Neurosurgery 69(5):1007–1014 (discussion 1014)PubMedGoogle Scholar
  8. 8.
    Josten C, Glasmacher S, Franck A (2013) Indications and limitations of minimally invasive stabilization of metastatic spinal disease. Orthopade 42(9):755–764CrossRefPubMedGoogle Scholar
  9. 9.
    Fourney DR, Gokaslan ZL (2003) Spinal instability and deformity due to neoplastic conditions. Neurosurg Focus 14(1):e8CrossRefPubMedGoogle Scholar
  10. 10.
    Fourney DR et al (2003) Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 98(1 Suppl):21–30PubMedGoogle Scholar
  11. 11.
    Cardoso ER et al (2009) Percutaneous tumor curettage and interstitial delivery of samarium-153 coupled with kyphoplasty for treatment of vertebral metastases. J Neurosurg Spine 10(4):336–342CrossRefPubMedGoogle Scholar
  12. 12.
    Dabravolski D et al (2014) Minimally invasive treatment of tumours and metastases in the spine by plasma field therapy (cavity coblation) and vertebro-/kyphoplasty with and without additional dorsal percutaneous instrumentation. Z Orthop Unfall 152(5):489–497CrossRefPubMedGoogle Scholar
  13. 13.
    Deschamps F et al (2014) Thermal ablation techniques: a curative treatment of bone metastases in selected patients? Eur Radiol 24(8):1971–1980CrossRefPubMedGoogle Scholar
  14. 14.
    Wiedenhofer B et al (2012) Vertebral stability in management of spinal metastases. Criteria and strategies for operative interventions. Orthopade 41(8):623–631CrossRefPubMedGoogle Scholar
  15. 15.
    Fourney DR et al (2011) Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol 29(22):3072–3077CrossRefPubMedGoogle Scholar
  16. 16.
    Taneichi H et al (1997) Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine 22(3):239–245CrossRefPubMedGoogle Scholar
  17. 17.
    Snyder BD et al (2009) Noninvasive Prediction of Fracture Risk in Patients with Metastatic Cancer to the Spine. Clin Cancer Res 15(24):7676–7683CrossRefPubMedGoogle Scholar
  18. 18.
    Tokuhashi Y et al (2005) A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine 30(19):2186–2191CrossRefPubMedGoogle Scholar
  19. 19.
    Tokuhashi Y et al (1990) Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine 15(11):1110–1113CrossRefPubMedGoogle Scholar
  20. 20.
    Tomita K et al (2001) Surgical strategy for spinal metastases. Spine 26(3):298–306CrossRefPubMedGoogle Scholar
  21. 21.
    Sioutos PJ et al (1995) Spinal metastases from solid tumors. Analysis of factors affecting survival. Cancer 76(8):1453–1459CrossRefPubMedGoogle Scholar
  22. 22.
    Bauer HC, Wedin R (1995) Survival after surgery for spinal and extremity metastases. Prognostication in 241 patients. Acta Orthop Scand 66(2):143–146CrossRefPubMedGoogle Scholar
  23. 23.
    Leithner A et al (2008) Predictive value of seven preoperative prognostic scoring systems for spinal metastases. Eur Spine J 17(11):1488–1495PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    van der Linden YM et al (2005) Prediction of survival in patients with metastases in the spinal column: results based on a randomized trial of radiotherapy. Cancer 103(2):320–328CrossRefPubMedGoogle Scholar
  25. 25.
    Lutz S et al (2011) Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 79(4):965–976CrossRefPubMedGoogle Scholar
  26. 26.
    Rades D, Abrahm JL (2010) The role of radiotherapy for metastatic epidural spinal cord compression. Nat Rev Clin Oncol 7(10):590–598CrossRefPubMedGoogle Scholar
  27. 27.
    Patchell RA et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366(9486):643–648CrossRefPubMedGoogle Scholar
  28. 28.
    Koswig S, Budach V (1999) Remineralization and pain relief in bone metastases after after different radiotherapy fractions (10 times 3 Gy vs. 1 time 8 Gy): a prospective study. Strahlenther Onkol 175(10):500–508CrossRefPubMedGoogle Scholar
  29. 29.
    Weber MH et al (2011) Instability and impending instability of the thoracolumbar spine in patients with spinal metastases: a systematic review. Int J Oncol 38(1):5–12PubMedGoogle Scholar
  30. 30.
    Sethukavalan P et al (2012) Patient costs associated with external beam radiotherapy treatment for localized prostate cancer: the benefits of hypofractionated over conventionally fractionated radiotherapy. Can J Urol 19(2):6165–6169PubMedGoogle Scholar
  31. 31.
    Overgaard J (2015) Radiotherapy. Gazing at the crystal ball of European radiotherapy. Nat Rev Clin Oncol 12(1):5–6CrossRefPubMedGoogle Scholar
  32. 32.
    Yang HL et al (2011) Do vertebroplasty and kyphoplasty have an antitumoral effect? Med Hypotheses 76(1):145–146CrossRefPubMedGoogle Scholar
  33. 33.
    Corcos G et al (2014) Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective evaluation of incidence and risk factors. Spine 39(5):E332–8CrossRefPubMedGoogle Scholar
  34. 34.
    Dalbayrak S et al (2010) Clinical and radiographic results of balloon kyphoplasty for treatment of vertebral body metastases and multiple myelomas. J Clin Neurosci 17(2):219–224CrossRefPubMedGoogle Scholar
  35. 35.
    Rajah G et al (2015) Predictors of delayed failure of structural kyphoplasty for pathological compression fractures in cancer patients. J Neurosurg Spine 23(2):228–232CrossRefPubMedGoogle Scholar
  36. 36.
    Korovessis P et al (2014) Is Kiva implant advantageous to balloon kyphoplasty in treating osteolytic metastasis to the spine? Comparison of 2 percutaneous minimal invasive spine techniques: a prospective randomized controlled short-term study. Spine (phila Pa 1976) 39(4):E231–9CrossRefGoogle Scholar
  37. 37.
    Schmidt R et al (2012) Kyphoplasty and intra-operative radiotheray, combination of kyphoplasty and intra-operative radiation for spinal metastases: technical feasibility of a novel approach. Int Orthop 36(6):1255–1260PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Loh J et al (2014) Extracranial oligometastatic renal cell carcinoma: current management and future directions. Future Oncol 10(5):761–774CrossRefPubMedGoogle Scholar
  39. 39.
    Tree AC et al (2013) Stereotactic body radiotherapy for oligometastases. Lancet Oncol 14(1):28–37CrossRefGoogle Scholar
  40. 40.
    Sundaresan N et al (2002) Surgery for solitary metastases of the spine: rationale and results of treatment. Spine 27(16):1802–1806CrossRefPubMedGoogle Scholar
  41. 41.
    Yao KC et al (2003) En bloc spondylectomy for spinal metastases: a review of techniques. Neurosurg Focus 15(5):E6CrossRefPubMedGoogle Scholar
  42. 42.
    Kobayashi T (2012) From improved survival to potential cure in patients with metastatic breast cancer. Breast Cancer 19(3):187–190CrossRefPubMedGoogle Scholar
  43. 43.
    Kobayashi T et al (2012) Possible clinical cure of metastatic breast cancer: lessons from our 30-year experience with oligometastatic breast cancer patients and literature review. Breast Cancer 19(3):218–237CrossRefPubMedGoogle Scholar
  44. 44.
    Di Lascio S, Pagani O (2014) Oligometastatic breast cancer: a shift from palliative to potentially curative treatment? Breast Care 9(1):7–14 (Basel)PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Thariat J et al (2012) Improvements of ablative local treatments modify the management of the oligometastatic disease. Cancer Radiother 16(5–6):325–329CrossRefPubMedGoogle Scholar
  46. 46.
    Pingel A, Kandziora F, Hoffmann CH (2014) Osteoporotic L1 burst fracture treated by short-segment percutaneous stabilization with cement-augmented screws and kyphoplasty (hybrid technique. Eur Spine J 23(9):2022–2023CrossRefPubMedGoogle Scholar
  47. 47.
    Josten C, Schmidt C, Spiegl U (2012) Osteoporotic vertebral body fractures of the thoracolumbar spine. Diagnostics and therapeutic strategies. Chirurg 83(10):866–874CrossRefPubMedGoogle Scholar
  48. 48.
    Lee YK et al (2013) Comparison of deliverable IMRT and VMAT for spine metastases using a simultaneous integrated boost. Br J Radiol 86(1022):20120466PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Bludau F et al (2013) Learning and teaching abilities of a newly inaugurated operation technique. Analysis of learning curves and transferability exemplified by Kypho-IORT. Orthopade 42(9):772–779CrossRefPubMedGoogle Scholar
  50. 50.
    Schneider F et al (2011) Development of a novel method for intraoperative radiotherapy during kyphoplasty for spinal metastases (Kypho-IORT). Int J Radiat Oncol Biol Phys 81(4):1114–1119CrossRefPubMedGoogle Scholar
  51. 51.
    Nwankwo O et al (2013) A virtual source model of a kilo-voltage radiotherapy device. Phys Med Biol 58(7):2363–2375CrossRefPubMedGoogle Scholar
  52. 52.
    El Saghir NS et al (2014) Tumor boards: optimizing the structure and improving efficiency of multidisciplinary management of patients with cancer worldwide. Am Soc Clin Oncol Educ Book e461–e466Google Scholar
  53. 53.
    Nakatsuka A et al (2004) Radiofrequency ablation combined with bone cement injection for the treatment of bone malignancies. J Vasc Interv Radiol 15(7):707–712CrossRefPubMedGoogle Scholar
  54. 54.
    Kurup AN et al (2013) Neuroanatomic considerations in percutaneous tumor ablation. Radiographics 33(4):1195–1215CrossRefPubMedGoogle Scholar
  55. 55.
    Yamane T et al (1992) The effects of hyperthermia on the spinal cord. Spine 17(11):1386–1391CrossRefPubMedGoogle Scholar
  56. 56.
    Froese G, Das RM, Dunscombe PB (1991) The sensitivity of the thoracolumbar spinal cord of the mouse to hyperthermia. Radiat Res 125(2):173–180CrossRefPubMedGoogle Scholar
  57. 57.
    Adachi A et al (2008) Heat distribution in the spinal canal during radiofrequency ablation for vertebral lesions: study in swine. Radiology 247(2):374–380CrossRefPubMedGoogle Scholar
  58. 58.
    Dupuy DE et al (2000) Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. Ajr Am J Roentgenol 175(5):1263–1266CrossRefPubMedGoogle Scholar
  59. 59.
    Gazis AN et al (2014) Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome. Spine J 14(4):604–608CrossRefPubMedGoogle Scholar
  60. 60.
    Groetz SF et al (2013) Thermometry during coblation and radiofrequency ablation of vertebral metastases: a cadaver study. Eur Spine J 22(6):1389–1393PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Kurup AN, Callstrom MR (2013) Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol 16(4):253–261CrossRefPubMedGoogle Scholar
  62. 62.
    Cunha MV et al (2012) Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): analysis of predictive factors. Int J Radiat Oncol Biol Phys 84(3):e343–e349CrossRefPubMedGoogle Scholar
  63. 63.
    Sung SH, Chang UK (2014) Evaluation of risk factors for vertebral compression fracture after stereotactic radiosurgery in spinal tumor patients. Korean J Spine 11(3):103–108PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Boehling NS et al (2012) Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J Neurosurg Spine 16(4):379–386CrossRefPubMedGoogle Scholar
  65. 65.
    Al-Omair A et al (2013) Radiation-induced vertebral compression fracture following spine stereotactic radiosurgery: clinicopathological correlation. J Neurosurg Spine 18(5):430–435CrossRefPubMedGoogle Scholar
  66. 66.
    Sahgal A et al (2013) Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol 31(27):3426–3431CrossRefPubMedGoogle Scholar
  67. 67.
    Sahgal A et al (2013) Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol 14(8):e310–e320CrossRefPubMedGoogle Scholar
  68. 68.
    Thibault I et al (2014) Spine stereotactic body radiotherapy for renal cell cancer spinal metastases: analysis of outcomes and risk of vertebral compression fracture. J Neurosurg Spine 21(5):711–718CrossRefPubMedGoogle Scholar
  69. 69.
    Nambu A et al (2013) Rib fracture after stereotactic radiotherapy for primary lung cancer: prevalence, degree of clinical symptoms, and risk factors. Bmc Cancer 13:68PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Aoki M et al (2015) Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54–56 Gy given in 9–7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size. Radiat Oncol 10:99PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Chiang A et al (2013) Pain flare is a common adverse event in steroid-naive patients after spine stereotactic body radiation therapy: a prospective clinical trial. Int J Radiat Oncol Biol Phys 86(4):638–642CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • F. Bludau
    • 1
  • T. Reis
    • 2
  • F. Schneider
    • 2
  • S. Clausen
    • 2
  • F. Wenz
    • 2
  • U. Obertacke
    • 1
  1. 1.Orthopädisch-Unfallchirurgisches ZentrumUniversitätsklinikum Mannheim, Med. Fakultät Mannheim der Universität HeidelbergMannheimDeutschland
  2. 2.Klinik für Strahlentherapie und RadioonkologieUniversitätsklinikum Mannheim, Med. Fakultät Mannheim der Universität HeidelbergMannheimDeutschland

Personalised recommendations