Advertisement

Der Radiologe

, Volume 54, Issue 7, pp 664–672 | Cite as

Rationale Schnittbildgebung des hepatozellulären Karzinoms

Die Herausforderung multimodaler Diagnosekriterien
  • A. Kircher
  • G. Bongartz
  • E.M. Merkle
  • C.J. ZechEmail author
Leitthema

Zusammenfassung

Klinisches/methodisches Problem

CT und MRT bilden den Goldstandard in der bildgebenden Diagnostik des hepatozellulären Karzinoms (HCC). Beide Verfahren erlauben als alleinige Untersuchung bei entsprechendem Kontrastmittelverhalten die Diagnose eines HCC. Eine radiologische Herausforderung stellen immer noch die Detektion von HCC-Läsionen < 2 cm, die Abgrenzung prämaligner und maligner Läsionen von anderen benignen Vorstufen der Hepatokarzinogenese sowie die Dignitätseinschätzung hypovaskulärer Leberläsionen in der zirrhotischen Leber dar.

Leistungsfähigkeit

Beide Untersuchungsmodalitäten erreichen inzwischen für Läsionen > 2 cm sehr hohe Detektionsraten zwischen 90 und 100 %. Für Läsionen zwischen 1 und 2 cm bestehen Vorteile der MRT mit Sensitivitäten zwischen 80 und 90 % gegenüber 60–75 % der CT. Die MRT-Diagnostik profitiert neben den multimodalen Diagnosekriterien zusätzlich vom Einsatz leberspezifischer Kontrastmittel, insbesondere in Kombination mit der Diffusionsbildgebung, wobei sowohl eine Erhöhung der Sensitivät als auch der diagnostischen Genauigkeit für Läsionen < 2 cm nachgewiesen werden konnte. Bezüglich der Abgrenzung des HCC von anderen nodulären Herdläsionen der zirrhotischen Leber hat sich gezeigt, dass die gleichzeitig vorliegende arterielle Hypervaskularisation und Hypointensität in der hepatobiliären Phase als spezifisch für das Vorliegen eines HCC einzustufen ist. Zudem ist ein hypointenses Signal in der hepatobiliären Phase mit einem hohen Vorhersagewert von bis zu 100 % für das Vorliegen eines High-grade-dysplastischen Knotens oder HCC assoziiert.

Bewertung

Die MRT unter Berücksichtigung von hepatobiliärer und diffusionsgewichteter Bildgebung („diffusion-weighted imaging“, DWI) stellt heutzutage die beste nichtinvasive Bilddiagnostik für die Detektion des HCC sowie zur Charakterisierung von Knoten in der zirrhotischen Leber dar, mit deutlichen Vorteilen gegenüber der CT bei der Detektion kleiner Läsionen < 2 cm sowie der Dignitäts- und Prognoseeinschätzung hypovaskulärer Vorstufen im Rahmen der Hepatokarzinogenese.

Empfehlung für die Praxis

Sowohl die MRT als auch die CT ermöglichen einen hohen Standard zur Diagnostik des HCC in der zirrhotischen Leber, mit Vorteilen der MRT bzgl. Detektionsrate und Spezifität. Die CT bietet für den klinischen Alltag eine schnelle, robuste sowie gut verfügbare Modalität mit Vorteilen bei Patienten in reduziertem Allgemeinzustand sowie eingeschränkter Compliance.

Schlüsselwörter

Leberzirrhose Regeneratknoten Dignitätseinschätzung Magnetresonanztomographie (MRT) Multidetektorcomputertomographie (MDCT) 

Rational imaging of hepatocellular carcinoma

The challenge of multimodal diagnostic criteria

Abstract

Clinical/methodical issue

Both computed tomography (CT) and magnetic resonance imaging (MRI) constitute the gold standard in radiological imaging of hepatocellular carcinoma (HCC). In cases of typical contrast behavior each modality as a single dynamic technique allows the diagnosis of HCC. There is still a challenge in detection of small HCCs < 2 cm, in differentiating HCC and high-grade dysplasia from other benign liver lesions as well as the evaluation of hypovascular liver lesions in the cirrhotic liver.

Performance

Nowadays, both modalities achieve high detection rates of 90–100 % for lesions > 2 cm. Regarding lesions between 1 and 2 cm there is a higher sensitivity for MRI ranging between 80 and 90 % compared to 60–75 % with CT. Besides the multimodal diagnostic criteria, MRI provides significant benefits with the use of hepatobiliary contrast. Especially in combination with diffusion- weighted imaging (DWI) increased sensitivity and diagnostic accuracy compared to CT has been described for lesions sized < 2 cm. Regarding the differentiation from other hepatic nodules in the cirrhotic liver there is strong evidence that the coexistence of arterial enhancement and hypointensity on hepatobiliary imaging is specific for HCC. Moreover, hypointensity on hepatobiliary imaging is associated with a high positive predictive value (PPV) of up to 100 % for the presence of high-grade dysplasia and HCC.

Achievements

The use of MRI including hepatobiliary imaging and DWI has to be regarded as the best non-invasive imaging modality for the detection of HCC and for the characterization of nodules in patients with liver cirrhosis. In comparison to CT there are benefits regarding detection of small lesions < 2 cm and evaluation of hypovascular liver lesions in the context of the hepatocarcinogenesis including prognostic values of premalignant lesions.

Practical recommendations

Both MRI and CT provide a high diagnostic performance in evaluation of HCC in liver cirrhosis. With MRI there are considerable advantages regarding the detection rate and specificity. For daily clinical routine, CT offers a fast, reliable and easy available modality with benefits for patients in reduced general state of health and restricted compliance.

Keywords

Liver cirrhosis Regenerative nodule Dignity estimation Magnetic resonance imaging (MRI) Multidetector computed tomography (MDCT) 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. C.J. Zech und E.M. Merkle weisen auf folgende Beziehungen hin: C.J. Zech – Advisory Board und Vortragshonorare von Bayer Healthcare; E.M. Merkle – Advisory Board und Vortragshonorare von Bayer Healthcare und Bracco. A. Kircher und G. Bongartz geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bartolozzi C, Battaglia V, Bargellini I et al (2013) Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging 38:290–296PubMedCrossRefGoogle Scholar
  2. 2.
    Bartolozzi C, Crocetti L, Lencioni R et al (2007) Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media. Eur Radiol 17:2519–2530PubMedCrossRefGoogle Scholar
  3. 3.
    Boll DT, Merkle EM (2009) Diffuse liver disease: strategies for hepatic CT and MR imaging. Radiographics 29:1591–1614PubMedCrossRefGoogle Scholar
  4. 4.
    Brancatelli G, Baron RL, Peterson MS et al (2003) Helical CT screening for hepatocellular carcinoma in patients with cirrhosis: frequency and causes of false-positive interpretation. AJR Am J Roentgenol 180:1007–1014PubMedCrossRefGoogle Scholar
  5. 5.
    Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485PubMedCrossRefGoogle Scholar
  6. 6.
    Bruix J, Sherman M, American Association for the Study of Liver D (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Burrel M, Llovet JM, Ayuso C et al (2003) MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 38:1034–1042PubMedCrossRefGoogle Scholar
  8. 8.
    De Ledinghen V, Laharie D, Lecesne R et al (2002) Detection of nodules in liver cirrhosis: spiral computed tomography or magnetic resonance imaging? A prospective study of 88 nodules in 34 patients. Eur J Gastroenterol Hepatol 14:159–165CrossRefGoogle Scholar
  9. 9.
    Grazioli L, Olivetti L, Fugazzola C et al (1999) The pseudocapsule in hepatocellular carcinoma: correlation between dynamic MR imaging and pathology. Eur Radiol 9:62–67PubMedCrossRefGoogle Scholar
  10. 10.
    Greten TF, Malek NP, Schmidt S et al (2013) Diagnosis of and therapy for hepatocellular carcinoma. Z Gastroenterol 51:1269–1326PubMedCrossRefGoogle Scholar
  11. 11.
    Hanna RF, Aguirre DA, Kased N et al (2008) Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features. Radiographics 28:747–769PubMedCrossRefGoogle Scholar
  12. 12.
    Holland AE, Hecht EM, Hahn WY et al (2005) Importance of small (< or = 20-mm) enhancing lesions seen only during the hepatic arterial phase at MR imaging of the cirrhotic liver: evaluation and comparison with whole explanted liver. Radiology 237:938–944PubMedCrossRefGoogle Scholar
  13. 13.
    Huppertz A, Haraida S, Kraus A et al (2005) Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT – initial observations. Radiology 234:468–478PubMedCrossRefGoogle Scholar
  14. 14.
    Hwang GJ, Kim MJ, Yoo HS et al (1997) Nodular hepatocellular carcinomas: detection with arterial-, portal-, and delayed-phase images at spiral CT. Radiology 202:383–388PubMedCrossRefGoogle Scholar
  15. 15.
    Hyodo T, Murakami T, Imai Y et al (2013) Hypovascular nodules in patients with chronic liver disease: risk factors for development of hypervascular hepatocellular carcinoma. Radiology 266:480–490PubMedCrossRefGoogle Scholar
  16. 16.
    Kadoya M, Matsui O, Takashima T et al (1992) Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 183:819–825PubMedCrossRefGoogle Scholar
  17. 17.
    Kanematsu M, Kondo H, Goshima S et al (2008) Magnetic resonance imaging of hepatocellular carcinoma. Oncology 75(Suppl 1):65–71PubMedCrossRefGoogle Scholar
  18. 18.
    Kang BK, Lim JH, Kim SH et al (2003) Preoperative depiction of hepatocellular carcinoma: ferumoxides-enhanced MR imaging versus triple-phase helical CT. Radiology 226:79–85PubMedCrossRefGoogle Scholar
  19. 19.
    Kim JE, Kim SH, Lee SJ et al (2011) Hypervascular hepatocellular carcinoma 1 cm or smaller in patients with chronic liver disease: characterization with gadoxetic acid-enhanced MRI that includes diffusion-weighted imaging. AJR Am J Roentgenol 196:W758–W765PubMedCrossRefGoogle Scholar
  20. 20.
    Kim JI, Lee JM, Choi JY et al (2008) The value of gadobenate dimeglumine-enhanced delayed phase MR imaging for characterization of hepatocellular nodules in the cirrhotic liver. Invest Radiol 43:202–210PubMedCrossRefGoogle Scholar
  21. 21.
    Kim YK, Kim CS, Han YM et al (2009) Detection of hepatocellular carcinoma: gadoxetic acid-enhanced 3-dimensional magnetic resonance imaging versus multi-detector row computed tomography. J Comput Assist Tomogr 33:844–850PubMedCrossRefGoogle Scholar
  22. 22.
    Kim YK, Lee WJ, Park MJ et al (2012) Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology 265:104–114PubMedCrossRefGoogle Scholar
  23. 23.
    Kudo M (2008) Hepatocellular carcinoma 2009 and beyond: from the surveillance to molecular targeted therapy. Oncology 75(Suppl 1):1–12PubMedCrossRefGoogle Scholar
  24. 24.
    Lauenstein TC, Salman K, Morreira R et al (2007) Gadolinium-enhanced MRI for tumor surveillance before liver transplantation: center-based experience. AJR Am J Roentgenol 189:663–670PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JY, Kim SH, Jeon YH et al (2010) Ferucarbotran-enhanced magnetic resonance imaging versus gadoxetic acid-enhanced magnetic resonance imaging for the preoperative detection of hepatocellular carcinoma: initial experience. J Comput Assist Tomogr 34:127–134PubMedCrossRefGoogle Scholar
  26. 26.
    Luca A, Caruso S, Milazzo M et al (2010) Multidetector-row computed tomography (MDCT) for the diagnosis of hepatocellular carcinoma in cirrhotic candidates for liver transplantation: prevalence of radiological vascular patterns and histological correlation with liver explants. Eur Radiol 20:898–907PubMedCrossRefGoogle Scholar
  27. 27.
    Marti-Bonmati L (1997) MR imaging characteristics of hepatic tumors. Eur Radiol 7:249–258PubMedCrossRefGoogle Scholar
  28. 28.
    Matsui O (2004) Imaging of multistep human hepatocarcinogenesis by CT during intra-arterial contrast injection. Intervirology 47:271–276PubMedCrossRefGoogle Scholar
  29. 29.
    Motosugi U, Ichikawa T, Sou H et al (2010) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256:151–158PubMedCrossRefGoogle Scholar
  30. 30.
    Muhi A, Ichikawa T, Motosugi U et al (2009) High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging 30:1005–1011PubMedCrossRefGoogle Scholar
  31. 31.
    Nishie A, Tajima T, Asayama Y et al (2011) Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma. Eur J Radiol 80:e29–e33PubMedCrossRefGoogle Scholar
  32. 32.
    Onaya H, Itai Y (2000) MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am 8:757–768PubMedGoogle Scholar
  33. 33.
    Park MJ, Kim YK, Lee MH et al (2013) Validation of diagnostic criteria using gadoxetic acid-enhanced and diffusion-weighted MR imaging for small hepatocellular carcinoma (≤ 2.0 cm) in patients with hepatitis-induced liver cirrhosis. Acta Radiol 54:127–136PubMedCrossRefGoogle Scholar
  34. 34.
    Park MJ, Kim YK, Lee MW et al (2012) Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 264:761–770PubMedCrossRefGoogle Scholar
  35. 35.
    Reimer P, Schneider G, Schima W (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559–578PubMedCrossRefGoogle Scholar
  36. 36.
    Rode A, Bancel B, Douek P et al (2001) Small nodule detection in cirrhotic livers: evaluation with US, spiral CT, and MRI and correlation with pathologic examination of explanted liver. J Comput Assist Tomogr 25:327–336PubMedCrossRefGoogle Scholar
  37. 37.
    Rofsky NM, Lee VS, Laub G et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884PubMedCrossRefGoogle Scholar
  38. 38.
    Saito K, Kotake F, Ito N et al (2005) Gd-EOB-DTPA enhanced MRI for hepatocellular carcinoma: quantitative evaluation of tumor enhancement in hepatobiliary phase. Magn Reson Med Sci 4:1–9PubMedCrossRefGoogle Scholar
  39. 39.
    Shinmura R, Matsui O, Kobayashi S et al (2005) Cirrhotic nodules: association between MR imaging signal intensity and intranodular blood supply. Radiology 237:512–519PubMedCrossRefGoogle Scholar
  40. 40.
    Sofue K, Tsurusaki M, Kawasaki R et al (2011) Evaluation of hypervascular hepatocellular carcinoma in cirrhotic liver: comparison of different concentrations of contrast material with multi-detector row helical CT – a prospective randomized study. Eur J Radiol 80:e237–e242PubMedCrossRefGoogle Scholar
  41. 41.
    Stoker J, Romijn MG, De Man RA et al (2002) Prospective comparative study of spiral computer tomography and magnetic resonance imaging for detection of hepatocellular carcinoma. Gut 51:105–107PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Taouli B, Vilgrain V, Dumont E et al (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78PubMedCrossRefGoogle Scholar
  43. 43.
    Vogl TJ, Stupavsky A, Pegios W et al (1997) Hepatocellular carcinoma: evaluation with dynamic and static gadobenate dimeglumine-enhanced MR imaging and histopathologic correlation. Radiology 205:721–728PubMedCrossRefGoogle Scholar
  44. 44.
    Xu PJ, Yan FH, Wang JH et al (2010) Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr 34:506–512PubMedCrossRefGoogle Scholar
  45. 45.
    Zech CJ, Grazioli L, Breuer J et al (2008) Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 43:504–511PubMedCrossRefGoogle Scholar
  46. 46.
    Zech CJ, Herrmann KA, Dietrich O et al (2008) Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol 43:261–266PubMedCrossRefGoogle Scholar
  47. 47.
    Zech CJ, Herrmann KA, Huber A et al (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450PubMedCrossRefGoogle Scholar
  48. 48.
    Zech CJ, Herrmann KA, Reiser MF et al (2007) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 6:43–52PubMedCrossRefGoogle Scholar
  49. 49.
    Zech CJ, Schoenberg SO, Herrmann KA et al (2004) Modern visualization of the liver with MRT. Current trends and future perspectives. Radiologe 44:1160–1169PubMedCrossRefGoogle Scholar
  50. 50.
    Zech CJ, Vos B, Nordell A et al (2009) Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 44:305–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Kircher
    • 1
  • G. Bongartz
    • 1
  • E.M. Merkle
    • 1
  • C.J. Zech
    • 1
    Email author
  1. 1.Klinik für Radiologie und NuklearmedizinUniversitätsspital BaselBaselSchweiz

Personalised recommendations