Advertisement

Der Radiologe

, Volume 54, Issue 5, pp 455–461 | Cite as

Detektion pulmonaler Rundherde

Neue Möglichkeiten der Thoraxradiographie
  • S. Pötter-LangEmail author
  • S. Schalekamp
  • C. Schaefer-Prokop
  • M. Uffmann
Leitthema

Zusammenfassung

Hintergrund

Das Thoraxröntgen mit den Vorteilen der schnellen Verfügbarkeit, geringen Strahlendosis und geringen Kosten ist unverändert die häufigste radiologische Untersuchung. Es wurde jedoch vielfach publiziert, dass primär im Thoraxröntgen übersehene Lungenrundherde retrospektiv sichtbar waren.

Radiologisches Standardverfahren

Die großen Fortschritte der Detektortechnologie mit verbesserter Dosiseffizienz und Ortsauflösung der Systeme führen zu einer gesteigerten Bildqualität bei geringerem Dosisbedarf.

Methodische Innovationen

Die Dual-energy-Aufnahmetechnik sowie auch Bildverarbeitungsmethoden wie die digitale Knochensubtraktion und die „temporal subtraction“ reduzieren das „anatomische Rauschen“ durch Reduktion überlagernder Strukturen im Thoraxröntgen. Computergestützte Diagnosesysteme (CAD) erhöhen die Aufmerksamkeit der Radiologen für bestimmte suspekte Areale.

Ergebnisse

Die zukunftsweisenden Bildverarbeitungsmethoden konnten deutliche Steigerungen bei der Detektion pulmonaler Rundherde im Thoraxröntgen zeigen und so die Wertigkeit dieser Methode im Vergleich zu Schnittbildverfahren wie der CT wieder steigern.

Bewertung

Viele dieser Methoden werden wahrscheinlich in naher Zukunft in den klinischen Alltag eingebunden werden, wobei hier Softwareerweiterungen Vorteile zeigen, da sie einfacher in die radiologischen Abteilungen integriert werden können und oft auch wesentlich kostengünstiger sind als Hardwarekomponenten.

Schlüsselwörter

Computergestützte Diagnosesysteme Dual-energy-Aufnahmetechnik Digitale Knochensubtraktion „Temporal subtraction“ Digitale Softwareprodukte 

Detection of lung nodules

New opportunities in chest radiography

Abstract

Background

Chest radiography still represents the most commonly performed X-ray examination because it is readily available, requires low radiation doses and is relatively inexpensive. However, as previously published, many initially undetected lung nodules are retrospectively visible in chest radiographs.

Standard radiological methods

The great improvements in detector technology with the increasing dose efficiency and improved contrast resolution provide a better image quality and reduced dose needs.

Methodical innovations

The dual energy acquisition technique and advanced image processing methods (e.g. digital bone subtraction and temporal subtraction) reduce the anatomical background noise by reduction of overlapping structures in chest radiography. Computer-aided detection (CAD) schemes increase the awareness of radiologists for suspicious areas.

Results

The advanced image processing methods show clear improvements for the detection of pulmonary lung nodules in chest radiography and strengthen the role of this method in comparison to 3D acquisition techniques, such as computed tomography (CT).

Assessment

Many of these methods will probably be integrated into standard clinical treatment in the near future. Digital software solutions offer advantages as they can be easily incorporated into radiology departments and are often more affordable as compared to hardware solutions.

Keywords

Computer-aided diagnosis systems Dual energy imaging Digital bone subtraction Temporal subtraction Digital software products 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Pötter-Lang, S. Schalekamp, C. Schaefer-Prokop, M. Uffmann geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Armato SG, Doshi DJ, Engelmann R et al (2006) Temporal subtractionof dual-energy chest radiographs. Med Phys 33:1911–1919 (PMID:16872098)Google Scholar
  2. 2.
    Balkaman JD, Mehandru S, DuPont E et al (2010) Dual energy subtraction digital radiography improves performance of a next generation computer-aided detection program. J Thorac Imaging 25:41–47CrossRefGoogle Scholar
  3. 3.
    Berger-Kulemann V, Pötter-Lang S, Gruber M et al (2012) Needle image plates compared to conventional CR in chest radiography: is dose reduction possible? Eur J Radiol 81:4156–4160PubMedCrossRefGoogle Scholar
  4. 4.
    Bertolini M, Nitrosi A, Rivetti S et al (2012) A comparison of digital radiography systems in terms of effective detective quantum efficieny. Med Phys 39:2617–2627PubMedCrossRefGoogle Scholar
  5. 5.
    Chen JJ, White CS (2008) Use of CAD to evaluate lung cancer on chest radiography. J Thorac Imaging 23:93–96PubMedCrossRefGoogle Scholar
  6. 6.
    Cowen AR, Davies AG, Kengyelics SM (2007) Advances in computed radiograph systems and their physical imaging characteristics. Clin Radiol 62:1132–1141PubMedCrossRefGoogle Scholar
  7. 7.
    De Boo DW, Uffmann M, Weber M et al (2011) Computer-aided detection of small pulmonary nodules in chest radiographs an observer study. Acad Radiol 18:1507–1514CrossRefGoogle Scholar
  8. 8.
    De Hoop B, Boo DW de, Gietema HA et al (2010) Computer-aided detection of lung cancer on chest radiographs: effect on observer performance. Radiology 257:532–540CrossRefGoogle Scholar
  9. 9.
    Difazio MC, MacMahon H, Xu XW et al (1997) Digital chest radiography: effect of temporal subtraction images on detection accuracy. Radiology 202:447–452PubMedGoogle Scholar
  10. 10.
    Freedman MT, Lo SCB, Seibel JC, Bromley CM (2011) Lung nodules: improved detection with software that suppresses the rib and clavicle on chest radiographs. Radiology 260:265–273PubMedCrossRefGoogle Scholar
  11. 11.
    Gruber M, Uffmann M, Weber M et al (2006) Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography. Eur Radiol 16:1544–1550PubMedCrossRefGoogle Scholar
  12. 12.
    Gurney JW (1993) Determining the likelihood of malignancy in solitary pulmonary noules with Bayesian analysis. Part I. Theory. Radiology 186:405–413PubMedGoogle Scholar
  13. 13.
    Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722PubMedCrossRefGoogle Scholar
  14. 14.
    Ho JT, Kruger RA (1989) Comparison of dual-energy and conventional chest radiography for nodule detection. Invest Radiol 24:861–868PubMedCrossRefGoogle Scholar
  15. 15.
    Johkoh T, Kozuka T, Tomiyama N et al (2002) Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs: evaluation of a commercially available computer-aided diagnosis system. Radiology 223:806–811PubMedCrossRefGoogle Scholar
  16. 16.
    Kakeda S, Nakmura K, Kamada K et al (2002) Improved detection of lung nodules by using a temporal subtracition technique. Radiology 224:145–151PubMedCrossRefGoogle Scholar
  17. 17.
    Kligerman S, Cai L, White CS (2013) The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph. J Thorac Imaging 28:244–252PubMedCrossRefGoogle Scholar
  18. 18.
    Li F, Engelmann R, Metz CE et al (2008) Lung cancers missed on chest radiographs: results obtained with a commercial computer-aided detection program. Radiology 246:273–280PubMedCrossRefGoogle Scholar
  19. 19.
    Li F, Engelmann R, Doi K, Mac Mahon H (2008) Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR Am J Roentgenol 190:886–891PubMedCrossRefGoogle Scholar
  20. 20.
    Li F, Engelmann R, Pesce LL, Doi K et al (2011) Small Lung cancers: improved detection by use of bone suppression imaging-comparison with dual-energy subtraction chest radiography. Radiology 261:937–949PubMedCrossRefGoogle Scholar
  21. 21.
    Matsumoto T, Yoshimura H, Doi K et al (1992) Image feature analysis of false-positive diagnoses prouced by automated detection of lung nodules. Invest Radiol 27:587–597PubMedCrossRefGoogle Scholar
  22. 22.
    Matsumoto T, Yoshimura H, Giger ML et al (1992) Potential usefulness of computerized nodule detection in screening programs for lung cancer. Invest Radiol 27:471–475PubMedCrossRefGoogle Scholar
  23. 23.
    Meyers PH, Nice Jr CM, Becker HC et al (1964) Automated computer analysis of radiographic images. Radiology 83:1029–1034PubMedGoogle Scholar
  24. 24.
    Monnier-Cholley L, Arrivé L, Porcel A et al (2001) Characteristics of missed lung cancer on chest radiographs: a French experience. Eur Radiol 11:597–605PubMedCrossRefGoogle Scholar
  25. 25.
    Neitzel U (2005) Status and prospects of digital detector technology for CR and DR. Radiat Prot Dosimetry 114:32–38PubMedCrossRefGoogle Scholar
  26. 26.
    Oda S, Awai K, Funama Y et al (2010) Detection of small pulmonary nodules on chest radiographs: efficacy of dual-energy subtraction technique using flat-panel detector chest radiography. Clin Radiol 65:609–615PubMedCrossRefGoogle Scholar
  27. 27.
    Prokop M, Neitzel U, Schaefer-Prokop C (2003) Principles of image processing in digital chest radiography. J Thorac Imaging 18:148–164PubMedCrossRefGoogle Scholar
  28. 28.
    Quekel LG, Kessels AG, Goei R, Engelshoven JM van (1999) Miss rate of lung cancer on the chest radiograph in clinical practice. Chest 115:720–724PubMedCrossRefGoogle Scholar
  29. 29.
    Rühl R, Wozniak MM, Werk M et al (2008) CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial. Eur Radiol 18:1831–1839PubMedCrossRefGoogle Scholar
  30. 30.
    Sakai S, Soeda H, Takahashi N et al (2006) Computer-aided nodule detection on digital chest radiography: validation test on consecutive T1 cases of resectable lung cancer. J Digit Imaging 19:376–382PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Schaefer-Prokop C, Neitzel U, Venema HW et al (2008) Digital chestradiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18:1818–1830PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Schaefer-Prokop CM, Boo DWD, Uffmann M, Prokop M (2009) DR and CR Recent advances in technology. Eur J Radiol 72:194–201PubMedCrossRefGoogle Scholar
  33. 33.
    Schalekamp S, Ginneken B van, Meiss L et al (2013) Bone suppressed images improve radiologists‘ detection performance for pulmonary nodules in chest radiographs. Eur J Radiol 82:2399–2405PubMedCrossRefGoogle Scholar
  34. 34.
    Schalekamp S, Ginneken B van, Karssemeijer N, Schaefer-Prokop CM (2014) Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med 35:3–16PubMedCrossRefGoogle Scholar
  35. 35.
    Schalekamp S, Ginneken B van, Koedam E et al (2014) Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology 12:131315. doi:http://dx.doi.org/10.1148/radiol.14131315 [Epub ahead of print]CrossRefGoogle Scholar
  36. 36.
    Shah PK, Austin JHM, White CS et al (2003) Missed non-small cell lung cancer: radiographic findings of potentially resectable lesions evident only in retrospect. Radiology 226:235–241PubMedCrossRefGoogle Scholar
  37. 37.
    Shiraishi J, Katsuragawa S, Ikezoe J et al (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists‘ detection of pulmonary nodules. AJR Am J Roentgenol 174:71–74PubMedCrossRefGoogle Scholar
  38. 38.
    Shiraishi J, Abe H, Li F et al (2006) Computer-aided diagnosis for the detection and classification of lung cancers on chest radiographs ROC analysis of radiologists‘ performance. Acad Radiol 13:995–1003PubMedCrossRefGoogle Scholar
  39. 39.
    Stahl M, Aach T, Dippel S (2000) Digital radiography enhancement by nonlinear multiscale processing. Med Phys 27:56–65PubMedCrossRefGoogle Scholar
  40. 40.
    Szucs-Farkas Z, Patak MA, Yuksel-Hatz S et al (2008) Single-exposure dual-energy subtraction chest radiography: detection of pulmonary nodules and masses in clinical practice. Eur Radiol 18:24–31PubMedCrossRefGoogle Scholar
  41. 41.
    Uozumi T, Nakamura K, Watanebe H et al (2001) ROC analysis of detection of metastatic pulmonary nodules on digital chest radiographs with temporal subtraction. Acad Radiol 8:871–878PubMedCrossRefGoogle Scholar
  42. 42.
    Veldkamp WJH, Kroft LJM, Geleijs J (2009) Dose and perceived image quality in chest radiography. Eur J Radiol 72:209–217PubMedCrossRefGoogle Scholar
  43. 43.
    White CS, Flukinger T, Jeudy J, Chen JJ (2009) Use of a computer-aided detection system to detect missed lung cancer at chest radiography. Radiology 252:273–281PubMedCrossRefGoogle Scholar
  44. 44.
    Li F, Hara T, Shiraishi J et al (2011) Improved detection of subtle lung nodules by use of chest radiographs with bone suppression imaging: receiver operating characteristic analysis with and without localization. AJR 196:W535–541PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. Pötter-Lang
    • 1
    Email author
  • S. Schalekamp
    • 2
  • C. Schaefer-Prokop
    • 2
    • 3
  • M. Uffmann
    • 4
  1. 1.Universitätsklinik für Radiologie und Nuklearmedizin, Department of Biomedical Imaging and Image-Guided TherapyMedizinische Universität WienWienÖsterreich
  2. 2.Radboud University Nijmegen Medical CenterNijmegenNiederlande
  3. 3.Meander Medical Center AmersfoortAmersfoortNiederlande
  4. 4.Abteilung für RadiodiagnostikLandesklinikum NeunkirchenNeunkirchenDeutschland

Personalised recommendations