Advertisement

Der Radiologe

, Volume 53, Issue 2, pp 136–140 | Cite as

Zukunftsweisende MRT-Techniken des fetalen Gehirns

  • V. SchöpfEmail author
  • E. Dittrich
  • V. Berger-Kulemann
  • G. Kasprian
  • K. Kollndorfer
  • D. Prayer
Leitthema

Zusammenfassung

Klinisches/methodisches Problem

Evaluierung des gesunden bzw. pathologischen fetalen Gehirns.

Radiologische Standardverfahren

Die Magnetresonanztomographie.

Methodische Innovationen

Zukunftsweisende Techniken in der MRT-Bildgebung des fetalen Gehirns.

Leistungsfähigkeit

Die Diffusionstensorbildgebung (DTI) befindet sich bereits in der klinischen Anwendung, alle anderen Methoden sind bisher noch als experimentell zu werten.

Bewertung

Auf dem Weg zur Etablierung als Standardverfahren.

Empfehlung für die Praxis

Eine kombinierte Verarbeitung funktioneller und struktureller Daten, modelliert für jede Schwangerschaftswoche, wird es zukünftig ermöglichen, anhand dieser fusionierten Informationen einen präzisen Einblick in den Entwicklungsprozess des Gehirns zu erlangen. Diese Erkenntnisse und Ergebnisse werden entscheidend zur Klärung des zeitlichen Verlaufs und des komplexen Aufbaus früher morphologischer Auffälligkeiten beitragen sowie deren Einfluss auf kognitive und sensorische Fähigkeiten aufzeigen.

Schlüsselwörter

Funktionelle Magnetresonanztomographie (fMRT) Spektroskopie Traktographie Bildgebung Gehirnentwicklung 

Advanced MRI techniques of the fetal brain

Abstract

Clinical/methodical issue

Evaluation of the normal and pathological fetal brain.

Standard radiological methods

Magnetic resonance imaging (MRI).

Methodical innovations

Advanced MRI of the fetal brain.

Performance

Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level.

Achievements

Serving as standard methods in the future.

Practical recommendations

Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities.

Keywords

Functional magnetic resonance imaging (fMRI) Spectroscopy Tractography Brain development Imaging 

Notes

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Habas PA, Kim K, Corbett-Detig JM et al (2010) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53(2):460–470PubMedCrossRefGoogle Scholar
  2. 2.
    Kuklisova-Murgasova M, Aljabar P, Srinivasan L et al (2011) A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54(4):2750–2763PubMedCrossRefGoogle Scholar
  3. 3.
    Dittrich E, Riklin-Raviv T, Kasprian G et al (2011) Learning a spatio-temporal latent atlas for fetal brain segmentation. Proceedings of the MICCAI 2011 Workshop on Image Analysis of Human Brain Development (IAHBD 2011)Google Scholar
  4. 4.
    Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407Google Scholar
  5. 5.
    Partridge SC, Mukherjee P, Berman JI et al (2005) Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 22(4):467–474PubMedCrossRefGoogle Scholar
  6. 6.
    Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants‘ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30(4):1121–1132PubMedCrossRefGoogle Scholar
  7. 7.
    Vasung L, Huang H, Jovanov-Milošević N et al (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217(4):400–417PubMedCrossRefGoogle Scholar
  8. 8.
    Huang H, Xue R, Zhang J et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29(13):4263–4273PubMedCrossRefGoogle Scholar
  9. 9.
    Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. Neuroimage 43(2):213–224PubMedCrossRefGoogle Scholar
  10. 10.
    Mitter C, Kasprian G, Brugger PC, Prayer D (2011) Three-dimensional visualization of fetal white-matter pathways in utero. Ultrasound Obstet Gynecol 37(2):252–253PubMedCrossRefGoogle Scholar
  11. 11.
    Engle EC (2010) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2(3):a001784PubMedCrossRefGoogle Scholar
  12. 12.
    Pugash D, Krssak M, Kulemann V, Prayer D (2009) Magnetic resonance spectroscopy of the fetal brain. Prenat Diagn 29(4):434–441PubMedCrossRefGoogle Scholar
  13. 13.
    Girard N, Gouny SC, Viola A et al (2006) Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med 56(4):768–775PubMedCrossRefGoogle Scholar
  14. 14.
    Cady EB (1996) Metabolite concentrations and relaxation in perinatal cerebral hypoxic-ischemic injury. Neurochem Res 21(9):1043–1052PubMedCrossRefGoogle Scholar
  15. 15.
    Azpurua H, Alvarado A, Mayobre F et al (2008) Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol 25(5):305–309PubMedCrossRefGoogle Scholar
  16. 16.
    Charles-Edwards GD, Jan W, To M et al (2010) Non-invasive detection and quantification of human foetal brain lactate in utero by magnetic resonance spectroscopy. Prenat Diagn 30(3):260–266PubMedGoogle Scholar
  17. 17.
    Wolfberg AJ, Robinson JN, Mulkern R et al (2007) Identification of fetal cerebral lactate using magnetic resonance spectroscopy. Am J Obstet Gynecol 196(1):e9–e11PubMedCrossRefGoogle Scholar
  18. 18.
    Wang ZJ, Vigneron DB, Miller SP et al (2008) Brain metabolite levels assessed by lactate-edited MR spectroscopy in premature neonates with and without pentobarbital sedation. AJNR Am J Neuroradiol 29(4):798–801PubMedCrossRefGoogle Scholar
  19. 19.
    Tabernero A, Vicario C, Medina JM (1996) Lactate spares glucose as a metabolic fuel in neurons and astrocytes from primary culture. Neurosci Res 26(4):369–376PubMedCrossRefGoogle Scholar
  20. 20.
    Roelants-Van RA, Grond J von der, Vries L de, Groenendaal F (2001) Value of (1)H-MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res 49(3):356–362CrossRefGoogle Scholar
  21. 21.
    Brunel H, Girard N, Confort-Gouny S et al (2004) Fetal brain injury. J Neuroradiol 31(2):123–137PubMedCrossRefGoogle Scholar
  22. 22.
    Berger-Kulemann V, Brugger PC, Pugash D et al (2012) MR spectroscopy of the fetal brain: is it possible without sedation? AJNR Am J Neuroradiol, in pressGoogle Scholar
  23. 23.
    Windischberger C, Fischmeister FPS, Schöpf V et al (2010) Functional magnetic resonance imaging with ultra-high fields. Radiologe 50(2):144–151PubMedCrossRefGoogle Scholar
  24. 24.
    Fulford J, Vadeyar SH, Dodampahala SH et al (2003) Fetal brain activity in response to a visual stimulus. Hum Brain Mapp 20(4):239–245PubMedCrossRefGoogle Scholar
  25. 25.
    Moore RJ, Vadeyar S, Fulford J et al (2001) Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Hum Brain Mapp 12(2):94–99PubMedCrossRefGoogle Scholar
  26. 26.
    Biswal BB (2012) Resting state fMRI: a personal history. Neuroimage 62(2):938–944PubMedCrossRefGoogle Scholar
  27. 27.
    Schöpf V, Kasprian G, Prayer D (2011) Functional imaging in the fetus. Top Magn Reson Imaging 22(3):113–118CrossRefGoogle Scholar
  28. 28.
    Schöpf V, Kasprian G, Schwindt J et al (2012) Visualization of resting-state networks in utero. Ultrasound Obstet Gynecol 39:487–488PubMedCrossRefGoogle Scholar
  29. 29.
    Schöpf V, Kasprian G, Brugger P, Prayer D (2012) Watching the fetal brain at „rest“. Int J Dev Neurosci 30(1):11–17PubMedCrossRefGoogle Scholar
  30. 30.
    Rosazza C, Minati L (2011) Resting-state brain networks: literature review and clinical applications. Neurol Sci 32(5):773–785PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Schöpf
    • 1
    Email author
  • E. Dittrich
    • 1
  • V. Berger-Kulemann
    • 1
  • G. Kasprian
    • 1
  • K. Kollndorfer
    • 1
  • D. Prayer
    • 1
  1. 1.Abteilung für Neuroradiologie und Muskuloskelettale Radiologie, Universitätsklinik für RadiodiagnostikMedizinische Universität WienWienÖsterreich

Personalised recommendations