Der Radiologe

, Volume 52, Issue 11, pp 994–1002 | Cite as

Radiologische Bildgebung der Kniegelenkarthrose

Leitthema
  • 812 Downloads

Zusammenfassung

Klinisches/methodisches Problem

Die Arthrose ist die häufigste chronische, altersassoziierte, degenerative Gelenkerkrankung, die zu typischer Knorpeldegradierung und verminderter Gelenkbeweglichkeit führt. Bei 70- bis 74-Jährigen liegt die Prävalenz einer Kniegelenkarthrose bei über 90%. Die demographische Altersentwicklung der westlichen Industrieländer prognostiziert einen deutlichen Anstieg der Arthroseinzidenz für die nächsten Jahrzehnte.

Radiologische Standardverfahren

Nach wie vor stellt die konventionelle projektionsradiographische Röntgenbildanalyse die einfachste und günstigste radiologische Modalität bei der Beurteilung und Verlaufskontrolle der Kniegelenkarthrose dar.

Methodische Innovationen

Das Röntgenbild birgt zunehmend in zahlreichen klinischen und wissenschaftlichen Situationen signifikante Limitierungen, welche durch moderne bildgebende Methoden wie der Magnetresonanztomographie (MRT) und Sonographie überwunden werden können.

Leistungsfähigkeit

Intravitale Knorpelbeurteilungen anhand spezieller bildgebender MRT-Methoden werden zunehmend in der Diagnostik und Verlaufskontrolle der Arthrose eingesetzt und könnten bei breiter klinischer Anwendung zukünftig zu einem Paradigmenwechsel bei der Behandlung arthrotischer Knorpelschäden führen. In diesem Übersichtsartikel sollen die wichtigsten radiologischen diagnostischen Merkmale der Kniegelenkarthrose und deren radiologisch Beurteilung dargestellt werden.

Empfehlung für die Praxis

Die demographische Altersentwicklung der westlichen Industrieländer prognostiziert einen deutlichen Anstieg der Arthroseinzidenz für die nächsten Jahrzehnte. Die systematische radiologische Beurteilung der Kniegelenkarthrose umfasst die Bestimmung der Gelenkkapselstrukturen, Synovia, Knorpeldicke, des Knorpelvolumens, eventueller Knorpeldefekte, des makromodularen Netzwerks des hyalinen Gelenkknorpels, eines Knochenmarködems, der Menisken und der artikulären Gelenkbänder. Moderne bildgebende Methoden wie die MRT und Sonographie sind in der Lage, die Schwächen der Projektionsradiographie zu eliminieren und das Kniegelenk mit seinen knöchernen, knorpeligen, ligamentösen und weichteildichten Strukturen detailliert abzubilden sowie den Schweregrad der Kniearthrose quantitativ zu beurteilen.

Schlüsselwörter

Bildgebung Radiologie Kniegelenkarthrose Magnetresonanztomographie Sonographie 

Radiological imaging of osteoarthritis of the knee

Abstract

Clinical/methodical issue

Osteoarthritis is the most common degenerative age-related joint disease leading to typical degradation of articular cartilage with severe pain and limitation of joint motion.

Standard radiological methods

Although knee radiographs are widely considered as the gold standard for the assessment of knee osteoarthritis in clinical and scientific settings they increasingly have significant limitations in situations when resolution and assessment of cartilage is required.

Methodical innovations

Analysis of osteoarthritis of the knee with conventional x-ray is associated with many technical limitations and is increasingly being replaced by high-quality assessment using magnetic resonance imaging (MRI) or sonography both in the clinical routine and scientific studies.

Performance

Novel imaging modalities such as MRI or ultrasound enable in vivo visualization of the quality of the cartilaginous structure and bone as well as all articular and periarticular tissue. Therefore, the limitations of radiographs in assessment of knee osteoarthritis could be overcome by these techniques. This review article aims to provide insights into the most important radiological features of knee osteoarthritis and systematic visualization with different imaging approaches.

Practical recommendations

The demographic development in western industrialized countries predicts an increase of ageing-related osteoarthritis of the knee for the next decades. A systematic radiological evaluation of patients with knee osteoarthritis includes the assessment of the periarticular soft tissue, cartilaginous thickness, cartilage volume, possible cartilage defects, the macromodular network of hyaline cartilage, bone marrow edema, menisci and articular ligaments. Modern imaging modalities, such as MRI and sonography allow the limitations of conventional radiography to be overcome and to visualize the knee structures in great detail to quantitatively assess the severity of knee osteoarthritis.

Keywords

Imaging Knee osteoarthritis Magnetic resonance imaging Radiology Sonography 

Literatur

  1. 1.
    Felson DT, Naimark A, Anderson J et al (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30(8):914–918PubMedCrossRefGoogle Scholar
  2. 2.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656PubMedGoogle Scholar
  3. 3.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502PubMedCrossRefGoogle Scholar
  4. 4.
    Wick MC, Klauser AS (2012) Radiological differential diagnosis of rheumatoid arthritis. Radiologe 52(2):116–123PubMedCrossRefGoogle Scholar
  5. 5.
    Peloschek PL, Sailer J, Kainberger F et al (2000) Radiological quantification of joint changes. A methodological overview. Radiologe 40(12):1154–1162PubMedCrossRefGoogle Scholar
  6. 6.
    Aigner N, Van der Kraan P, Van den Berg W (2007) Osteoarthritis and inflammation: inflammatory changes in osteoarthritis synoviopathy. In: Buckwalter J, Lotz M, Stoltz JF (eds) Osteoarthritis, inflammation and degradation: a continuum. IOS, Amsterdam, pp 219–235Google Scholar
  7. 7.
    Altman R, Brandt K, Hochberg M et al (1996) Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a work-shop. Osteoarthritis Cartil 4(4):217–243CrossRefGoogle Scholar
  8. 8.
    Eckstein F, Schnier M, Haubner M et al (1998) Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. Clin Orthop Relat Res (352):137–148Google Scholar
  9. 9.
    Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-organ magnetic resonance imaging (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartil 12(3):177–190CrossRefGoogle Scholar
  10. 10.
    Cicuttini F, Ding C, Wluka A et al (2005) Association of cartilage defects with loss of knee cartilage in healthy, middle-aged adults: a prospective study. Arthritis Rheum 52(7):2033–2039PubMedCrossRefGoogle Scholar
  11. 11.
    Conaghan PG, Hunter DJ, Maillefert JF et al (2011) Summary and recommendations of the OARSI FDA osteoarthritis assessment of structural change working group. Osteoarthritis Cartil 19(5):606–610CrossRefGoogle Scholar
  12. 12.
    Burnett S, Hart DJ, Cooper C, Spector TD (1994) A radiographic atlas of osteoarthritis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Cicuttini FM, Baker J, Hart DJ, Spector TD (1996) Association of pain with radiological changes in different compartments and views of the knee joint. Osteoarthritis Cartil 4(2):143–147CrossRefGoogle Scholar
  14. 14.
    Felson DT, Gale DR, Elon Gale M et al (2005) Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford) 44(1):100–104Google Scholar
  15. 15.
    Spector TD, Harris PA, Hart DJ et al (1996) Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum 39(6):988–995PubMedCrossRefGoogle Scholar
  16. 16.
    Adams JG, McAlindon T, Dimasi M et al (1999) Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin Radiol 54(8):502–506PubMedCrossRefGoogle Scholar
  17. 17.
    Bruyere O, Genant H, Kothari M et al (2007) Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthritis Cartil 15(1):98–103CrossRefGoogle Scholar
  18. 18.
    Ravaud P, Chastang C, Auleley GR et al (1996) Knee joint space width measurement: an experimental study of the influence of radiographic procedure and joint positioning. J Rheumatol 23(10):1749–1755PubMedGoogle Scholar
  19. 19.
    Vignon E, Piperno A, Le Graverand MP et al (2003) Measurement of radiographic joint space width in the tibiofemoral compartment of the osteoarthritic knee: comparison of standing anteroposterior and Lyon schuss views. Arthritis Rheum 48(2):378–384PubMedCrossRefGoogle Scholar
  20. 20.
    Raynauld JP, Martel-Pelletier J, Berthiaume MJ et al (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 50(2):476–487PubMedCrossRefGoogle Scholar
  21. 21.
    Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18(6):1251–1259PubMedCrossRefGoogle Scholar
  22. 22.
    Eckstein F, Gavazzeni A, Sittek H et al (1996) Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 36(2):256–265PubMedCrossRefGoogle Scholar
  23. 23.
    Waterton JC, Solloway S, Foster JE et al (2000) Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magn Reson Med 43(1):126–132PubMedCrossRefGoogle Scholar
  24. 24.
    Peterfy CG, Van Dijke CF, Janzen DL et al (1994) Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 192(2):485–491PubMedGoogle Scholar
  25. 25.
    Pilch L, Steward C, Gordon D et al (1994) Assessment of cartilage volume in the femorotibial joint with magnetic resonance imaging and 3D computer reconstruction. J Rheumatol 21(12):2307–2321PubMedGoogle Scholar
  26. 26.
    Burgkart R, Glaser C, Hylik-Dürr A et al (2001) Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum 44(9):2072–2077PubMedCrossRefGoogle Scholar
  27. 27.
    Graichen H, Einsenhart-Rothe R von, Vogl T et al (2004) Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analasys of cartilage volume and further morphologic parameters. Arthritis Rheum 50(3):811–816PubMedCrossRefGoogle Scholar
  28. 28.
    Cicuttini F, Forbes A, Asbeutah A et al (2000) Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 18(4):580–584PubMedCrossRefGoogle Scholar
  29. 29.
    Ding C, Garnero P, Cicuttini F et al (2005) Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartil 13(3):198–205CrossRefGoogle Scholar
  30. 30.
    Boegard TL, Rudling O, Petersson IF, Johnsson K (2001) Magnetic resonance imaging of the knee in chronic knee pain: a 2-year follow-up. Osteoarthritis Cartil 9(5):473–480CrossRefGoogle Scholar
  31. 31.
    Hjelle K, Solheim E, Strand T et al (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734PubMedCrossRefGoogle Scholar
  32. 32.
    Ding C, Cicuttini F, Scott F et al (2005) Knee structural alterations and BMI: a cross-sectional study. Obes Res 13(2):350–361PubMedCrossRefGoogle Scholar
  33. 33.
    Welsch GH, Mamisch TH, Hughes T et al (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zona Z2, and T2* mapping of articular cartilage. Invest Radiol 43(9):619–626PubMedCrossRefGoogle Scholar
  34. 34.
    Zilkens C, Jäger A, Bittersohl B et al (2009) Delayed gadolinium enhanced MRI of cartilage (dGEMRIC): molecular MRI of hip joint cartilage. Orthopade 38(7):591–599PubMedCrossRefGoogle Scholar
  35. 35.
    Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41PubMedCrossRefGoogle Scholar
  36. 36.
    Tiderius CJ, Svensson J, Leander P et al (2004) dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 51(2):286–290PubMedCrossRefGoogle Scholar
  37. 37.
    Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52(11):3507–3514PubMedCrossRefGoogle Scholar
  38. 38.
    Ericsson YB, Tjornstrand J, Tiderius CJ, Dahlberg LE (2009) Relationship between cartilage gylcosaminoglycan content (assessed with dGEMRIC) and OA risk factors in meniscectomized patients. Osteoarthritis Cartil 17(5):559–564CrossRefGoogle Scholar
  39. 39.
    Wang Y, Wluka AE, Davis S, Cicuttini FM (2006) Factors affecting tibial plateau expansion in healthy women over 2.5 years: a longitudinal study. Osteoarthritis Cartil 14(12):1258–1264CrossRefGoogle Scholar
  40. 40.
    Hayashi D, Guermazi A, Kwoh CK et al (2011) Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3 T MRI: a comparison between intermediate-weighted fat-supressed spin echo and dual echo steady state sequences. BMC Musculoskelet Disord 12:198PubMedCrossRefGoogle Scholar
  41. 41.
    Hill CL, Seo GS, Gale D et al (2005) Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 52(3):794–799PubMedCrossRefGoogle Scholar
  42. 42.
    Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 Tesla: a comparison using dedicated multi-channel coils and optimized 2D and 3D protocols. Eur Radiol [Epub ahead of print]Google Scholar
  43. 43.
    Bhattacharyya T, Gale D, Dewire P et al (2003) The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J Bone Joint Surg [Am] 85-A(1):4–9Google Scholar
  44. 44.
    Klauser AS, Moriggl B, Duftner C et al (2006) Sonography of synovial and erosive inflammatory changes. Radiologe 46(5):365–375PubMedCrossRefGoogle Scholar
  45. 45.
    Monteforte P, Rovetta G (1999) Sonographic assessment of soft tissue alterations in osteoarthritis of the knee. Int J Tissue React 21(1):19–23PubMedGoogle Scholar
  46. 46.
    Naredo E, Acebes C, Möller I et al (2009) Ultrasound validity in the measurement of knee cartilage thickness. Ann Rheum Dis 68(8):1322–1327PubMedCrossRefGoogle Scholar
  47. 47.
    Qvistgaard E, Kristoffersen H, Terslev L et al (2001) Guidance by ultrasound of intraarticular injections in the knee and hip joints. Osteoarthritis Cartil 9(6):512–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department RadiologieMedizinische Universität InnsbruckInnsbruckÖsterreich

Personalised recommendations