Advertisement

Der Radiologe

, Volume 52, Issue 1, pp 29–37 | Cite as

Kryoablation – wieder da?

  • P. Isfort
  • T. Penzkofer
  • A.H. Mahnken
Leitthema

Zusammenfassung

Klinisches Problem

Primäre und sekundäre Lebertumoren stellen oft einen lebenslimitierenden Faktor dar. Nur bei einer Minderheit der Patienten ist eine potenziell kurative Therapie mittels Resektion möglich. Minimalinvasive Therapieverfahren wie Radiofrequenzablation (RFA), Mikrowellenablation (MWA) oder die Kryoablation bieten nichtoperablen Patienten bei begrenzter Tumorausdehnung eine gut verträgliche alternative Therapiemöglichkeit in kurativem und palliativem Therapieansatz. Die Größe der Ablationsareale und damit der zu behandelnden Raumforderungen ist bei den hyperthermen Ablationsverfahren begrenzt. Ferner kann die tatsächliche Größe des Ablationsareals während der Intervention nur ungenau mit CT, MRT und Ultraschall dargestellt werden.

Therapeutische Standardverfahren

Standardverfahren der minimalinvasiven sondenbasierten Tumortherapie ist die RFA. Die Kryoablation war bislang dagegen aufgrund technischer Nachteile (großer Sondendurchmesser; lange Ablationszeiten) weniger verbreitet.

Neue Therapieverfahren

Die argon-/heliumbasierten Kryoablationssysteme der aktuellen Generation verbinden den Vorteil von mit RFA und MWA vergleichbaren schmalkalibrigen Applikatoren mit den methodischen Vorteilen der Kryoablation.

Bewertung

Die Kryoablation ist eine Methode der minimalinvasiven Tumortherapie mit methodischen Vorteilen wie beinahe beliebiger Größe der Ablationsareale und Visualisierung des Ablationsareals mittels CT, MRT und Ultraschall in Echtzeit und intrinsischer analgetischer Wirkung. Jedoch ist die Kryoablation deutlich weniger zeitökonomisch als die MWA. Insbesondere bei Lebermetastasen ist die RFA das etabliertere Verfahren.

Empfehlung für die Praxis

Die Kryoablation ist eine faszinierende Methode, die mit guten Ergebnissen bei hepatozellulären Karzinomen innerhalb der Milan-Kriterien und bei T1a-Nierenzellkarzinomen eingesetzt werden kann. Des Weiteren kann sie als effektive Methode zur Schmerzlinderung bei Knochentumoren eingesetzt werden.

Schlüsselwörter

Ablation Ablationsareal Kryotherapie Tumor Interventionelle Onkologie 

Cryoablation – back again?

Abstract

Clinical issue

Primary and secondary liver tumors often limit patient outcome and only a minority of patients are eligible for potential curative surgery. Minimally invasive treatments, such as radiofrequency ablation (RFA), microwave ablation (MWA) and cryoablation are alternative treatment options in a curative and palliative setting. One major limitation of RFA and MWA is the limited size of tumor ablation. Furthermore during the procedure the ablation size can only be roughly estimated using RFA and MWA.

Standard treatment

RFA is the standard modality of minimally invasive tumor therapy. In comparison cryoablation is rarely used despite its advantages.

Treatment innovations

Argon-helium-based cryoablation systems of the newest generation combine the advantage of small diameter applicators comparable with those of RFA and MWA systems with intrinsic advantages.

Achievements

Cryoablation is a minimally invasive treatment option with advantages, such as virtually unlimited ablation size, real-time visualization using computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound and intrinsic analgesic effects. On the other hand it is not very time-efficient in comparison to MWA. Especially in liver metastases RFA is the preferred treatment option.

Practical recommendations

Cryoablation is a fascinating treatment option in minimally invasive tumor treatment. It demonstrates good results in hepatocellular carcinoma within the Milan criteria and T1a renal cell carcinoma. Furthermore it is a well-established treatment modality for palliative pain management in bone tumors.

Keywords

Ablation Ablation size Cryotherapy Neoplasm Interventional oncology 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Deutsche Krebshilfe – Krebszahlen Deutschland und weltweit“ 2011. [Online]. Available: http://www.krebshilfe.de/krebszahlen.html. [Accessed: 19-Aug-2011]Google Scholar
  2. 2.
    Hinshaw JL, Lee FT, Laeseke PF et al (2010) Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation. J Vasc Interv Radiol 21(9):1424–1428PubMedCrossRefGoogle Scholar
  3. 3.
    Orlacchio A, Bazzocchi G, Pastorelli D et al (2008) Percutaneous cryoablation of small hepatocellular carcinoma with US guidance and CT monitoring: initial experience. Cardiovasc Intervent Radiol 31(3):587–594PubMedCrossRefGoogle Scholar
  4. 4.
    Livraghi T, Lazzaroni S, Pellicanò S et al (1993) Percutaneous ethanol injection of hepatic tumors: single-session therapy with general anesthesia. AJR Am J Roentgenol 161(5):1065–1069PubMedGoogle Scholar
  5. 5.
    Livraghi T, Goldberg SN, Lazzaroni S et al (1999) Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 210(3):655–661PubMedGoogle Scholar
  6. 6.
    Cooper I (1961) Cryostatic congelation: a system for producing a limited, controlled region of cooling or freezing of biologic tissues. J Nerv Ment Dis 133:259–263PubMedCrossRefGoogle Scholar
  7. 7.
    Kim C, O’Rourke AP, Mahvi DM et al (2007) Finite-element analysis of ex vivo and in vivo hepatic cryoablation. IEEE Trans Biomed Eng 54(7):1177–1185PubMedCrossRefGoogle Scholar
  8. 8.
    Bischof J, Christov K, Rubinsky B (1993) A morphological study of cooling rate response in normal and neoplastic human liver tissue: cryosurgical implications. Cryobiology 30(5):482–492PubMedCrossRefGoogle Scholar
  9. 9.
    Rubinsky B, Lee C, Bastacky J et al (1990) The process of freezing and the mechanism of damage during hepatic cryosurgery. Cryobiology 27(1):85–97PubMedCrossRefGoogle Scholar
  10. 10.
    Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168(934):939–949PubMedCrossRefGoogle Scholar
  11. 11.
    Giampapa VC, Oh C, Aufses AH et al (1981) The vascular effect of cold injury. Cryobiology 18(1):49–54PubMedCrossRefGoogle Scholar
  12. 12.
    Hinshaw JL, Littrup PJ, Durick N et al (2010) Optimizing the protocol for pulmonary cryoablation: a comparison of a dual- and triple-freeze protocol. Cardiovasc Intervent Radiol 33(6):1180–1185PubMedCrossRefGoogle Scholar
  13. 13.
    Rewcastle JC, Sandison GA, Muldrew K et al (2001) A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes. Med Phys 28(6):1125–1137PubMedCrossRefGoogle Scholar
  14. 14.
    Seifert JK, Junginger T, Morris DL (1998) A collective review of the world literature on hepatic cryotherapy. J R Coll Surg Edinb 43(3):141–154PubMedGoogle Scholar
  15. 15.
    Weaver ML, Atkinson D, Zemel R (1995) Hepatic cryosurgery in the treatment of unresectable metastases. Surg Oncol 4(5):231–236PubMedCrossRefGoogle Scholar
  16. 16.
    Xu KC, Niu LZ, Zhou Q et al (2009) Sequential use of transarterial chemoembolization and percutaneous cryosurgery for hepatocellular carcinoma. World J Gastroenterol 15(29):3664–1669PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffords JV, Stallworth JM (1956) The use of refrigeration anesthesia (regional hypothermia) for amputation in poor-risk patients with peripheral vascular diseases. Am Surg 22(10):998–1004PubMedGoogle Scholar
  18. 18.
    Vogl TJ, Mack MG, Roggan A et al (1998) Internally cooled power laser for MR-guided interstitial laser-induced thermotherapy of liver lesions: initial clinical results. Radiology 209(2):381–385PubMedGoogle Scholar
  19. 19.
    Nair RT, Silverman SG, Tuncali K et al (2008) Biochemical and hematologic alterations following percutaneous cryoablation of liver tumors: experience in 48 procedures. Radiology 248(1):303–311PubMedCrossRefGoogle Scholar
  20. 20.
    Chapman WC, Debelak JP, Wright Pinson C et al (2000) Hepatic cryoablation, but not radiofrequency ablation, results in lung inflammation. Ann Surg 231(5):752–761PubMedCrossRefGoogle Scholar
  21. 21.
    McLoughlin RF, Saliken JF, McKinnon G et al (1995) CT of the liver after cryotherapy of hepatic metastases: imaging findings. AJR Am J Roentgenol 165(2):329–332PubMedGoogle Scholar
  22. 22.
    Saliken JC, McKinnon G, Gray R (1996) CT for monitoring cryotherapy. AJR Am J Roentgenol 166(4):853–855PubMedGoogle Scholar
  23. 23.
    Tacke J, Speetzen R, Heschel I et al (1999) Imaging of interstitial cryotherapy – an in vitro comparison of ultrasound, computed tomography, and magnetic resonance imaging. Cryobiology 38(3):250–259PubMedCrossRefGoogle Scholar
  24. 24.
    Tacke J, Adam G, Haage P et al (2001) MR-guided percutaneous cryotherapy of the liver: in vivo evaluation with histologic correlation in an animal model. J Magn Reson Imaging 13(1):50–56PubMedCrossRefGoogle Scholar
  25. 25.
    Haage P, Tacke J (2001) MR-gesteuerte perkutane Kryotherapie von Lebermetastasen. Radiologe 41(1):77–83PubMedCrossRefGoogle Scholar
  26. 26.
    Desai MM, Gill IS (2002) Current status of cryoablation and radiofrequency ablation in the management of renal tumors. Curr Opin Urol 12(5):387–393PubMedCrossRefGoogle Scholar
  27. 27.
    Weight CJ, Kaouk JH, Hegarty NJ et al (2008) Correlation of radiographic imaging and histopathology following cryoablation and radio frequency ablation for renal tumors. J Urol 179(4):1277–1281, discussion 1281–1283PubMedCrossRefGoogle Scholar
  28. 28.
    Matin SF (2010) Determining failure after renal ablative therapy for renal cell carcinoma: false-negative and false-positive imaging findings. Urology 75(6):1254–1257PubMedCrossRefGoogle Scholar
  29. 29.
    Campbell SC, Novick AC, Belldegrun A et al (2009) Guideline for management of the clinical T1 renal mass. J Urol 182(4):1271–1279PubMedCrossRefGoogle Scholar
  30. 30.
    Tacke J, Mahnken AH, Günther RW (2005) Percutaneous thermal ablation of renal neoplasms. Rofo 177(12):1631–1640PubMedCrossRefGoogle Scholar
  31. 31.
    Littrup PJ, Ahmed A, Aoun HD et al (2007) CT-guided percutaneous cryotherapy of renal masses. J Vasc Interv Radiol 18(3):383–392PubMedCrossRefGoogle Scholar
  32. 32.
    Atwell TD, Farrell MA, Callstrom MR et al (2007) Percutaneous cryoablation of 40 solid renal tumors with US guidance and CT monitoring: initial experience. Radiology 243(1):276–283PubMedCrossRefGoogle Scholar
  33. 33.
    Yang B, Autorino R, Remer EM et al (2011) Probe ablation as salvage therapy for renal tumors in von Hippel-Lindau patients: the Cleveland clinic experience with 3 years follow-up. Urol Oncol 30 [Epub ahead of print]Google Scholar
  34. 34.
    Heintz J, Berkowitz J, Sausville J et al (2011) Combined nephron-sparing techniques for the management of bilateral synchronous renal masses. Urology 77(4):772–774PubMedCrossRefGoogle Scholar
  35. 35.
    Weisbrod AJ, Atwell TD, Frank I et al (2010) Percutaneous cryoablation of masses in a solitary kidney. AJR Am J Roentgenol 194(6):1620–1625PubMedCrossRefGoogle Scholar
  36. 36.
    Suson KD, Richard H 3rd, Phelan MW (2011) Cryoablation of renal fossa recurrence after radical nephrectomy. J Endourol 25(4):559–562PubMedCrossRefGoogle Scholar
  37. 37.
    Niu R, Yan TD, Zhu JC et al (2007) Recurrence and survival outcomes after hepatic resection with or without cryotherapy for liver metastases from colorectal carcinoma. Ann Surg Oncol 14(7):2078–2087PubMedCrossRefGoogle Scholar
  38. 38.
    Joosten J, Jager G, Oyen W et al (2005) Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol 31(10):1152–1159PubMedCrossRefGoogle Scholar
  39. 39.
    Pearson AS, Izzo F, Fleming RY et al (1999) Intraoperative radiofrequency ablation or cryoablation for hepatic malignancies. Am J Surg 178(6):592–599PubMedCrossRefGoogle Scholar
  40. 40.
    Adam R, Hagopian EJ, Linhares M et al (2002) A comparison of percutaneous cryosurgery and percutaneous radiofrequency for unresectable hepatic malignancies. Arch Surg 137(12):1332–1339PubMedCrossRefGoogle Scholar
  41. 41.
    Bilchik AJ, Wood TF, Allegra D et al (2000) Cryosurgical ablation and radiofrequency ablation for unresectable hepatic malignant neoplasms: a proposed algorithm. Arch Surg 135(6):657–662, discussion 662–664PubMedCrossRefGoogle Scholar
  42. 42.
    Shimizu T, Sakuhara Y, Abo D et al (2009) Outcome of MR-guided percutaneous cryoablation for hepatocellular carcinoma. J Hepatobiliary Pancreat Surg 16(6):816–823PubMedCrossRefGoogle Scholar
  43. 43.
    Vergnon JM, Schmitt T, Alamartine E et al (1992) Initial combined cryotherapy and irradiation for unresectable non-small cell lung cancer. Preliminary results. Chest 102(5):1436–1440PubMedCrossRefGoogle Scholar
  44. 44.
    Ahmed A, Littrup P (2006) Percutaneous cryotherapy of the thorax: safety considerations for complex cases. AJR Am J Roentgenol 186(6):1703–1706PubMedCrossRefGoogle Scholar
  45. 45.
    Wang H, Littrup PJ, Duan Y et al (2005) Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology 235(1):289–298PubMedCrossRefGoogle Scholar
  46. 46.
    Kawamura M, Izumi Y, Tsukada N et al (2006) Percutaneous cryoablation of small pulmonary malignant tumors under computed tomographic guidance with local anesthesia for nonsurgical candidates. J Thorac Cardiovasc Surg 131(5):1007–1013PubMedCrossRefGoogle Scholar
  47. 47.
    Choe YH, Kim SR, Lee KS et al (2009) The use of PTC and RFA as treatment alternatives with low procedural morbidity in non-small cell lung cancer. Eur J Cancer 45(10):1773–1779PubMedCrossRefGoogle Scholar
  48. 48.
    Callstrom MR, Atwell TD, Charboneau JW et al (2006) Painful metastases involving bone: percutaneous image-guided cryoablation – prospective trial interim analysis. Radiology 241(2):572–580PubMedCrossRefGoogle Scholar
  49. 49.
    Cleeland CS, Gonin R, Hatfield AK et al (1994) Pain and its treatment in outpatients with metastatic cancer. N Engl J Med 330(9):592–596PubMedCrossRefGoogle Scholar
  50. 50.
    Gangi A, Buy X (2010) Percutaneous bone tumor management. Semin Intervent Radiol 27(2):124–136PubMedCrossRefGoogle Scholar
  51. 51.
    Liu DM, Kee ST, Loh CT et al (2010) Cryoablation of osteoid osteoma: two case reports. J Vasc Interv Radiol 21(4):586–589PubMedCrossRefGoogle Scholar
  52. 52.
    Wu B, Xiao YY, Zhang X et al (2011) CT-guided percutaneous cryoablation of osteoid osteoma in children: an initial study. Skeletal Radiol 40(10):1303–1310PubMedCrossRefGoogle Scholar
  53. 53.
    Pfleiderer SO, Freesmeyer MG, Marx C et al (2002) Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations. Eur Radiol 12(12):3009–3014PubMedGoogle Scholar
  54. 54.
    Sabel MS, Kaufman CS, Whitworth P et al (2004) Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol 11(5):542–549PubMedCrossRefGoogle Scholar
  55. 55.
    Morin J, Traoré A, Dionne G et al (2004) Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can J Surg 47(5):347–351PubMedGoogle Scholar
  56. 56.
    Welch BT, Atwell TD, Nichols DA et al (2011) Percutaneous image-guided adrenal cryoablation: procedural considerations and technical success. Radiology 258(1):301–307PubMedCrossRefGoogle Scholar
  57. 57.
    Li C, Wu L, Song J et al (2011) MR imaging-guided cryoablation of metastatic brain tumours: initial experience in six patients. Eur Radiol 20(2):404–409CrossRefGoogle Scholar
  58. 58.
    Gilbert JC, Rubinsky B, Roos MS et al (1993) MRI-monitored cryosurgery in the rabbit brain. Magn Reson Imaging 11(8):1155–1164PubMedCrossRefGoogle Scholar
  59. 59.
    Matsumoto R, Oshio K, Jolesz FA (1992) Monitoring of laser and freezing-induced ablation in the liver with T1-weighted MR imaging. J Magn Reson Imaging 2(5):555–562PubMedCrossRefGoogle Scholar
  60. 60.
    Skonieczki BD, Wells C, Wasser EJ et al (2010) Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: is it safe? Eur J Radiol 29 [Epub ahead of print]Google Scholar
  61. 61.
    McTaggart RA, Dupuy DE (2007) Thermal ablation of lung tumors. Tech Vasc Interv Radiol 10(2):102–113PubMedCrossRefGoogle Scholar
  62. 62.
    Mahnken AH, Günther RW, Tacke J (2004) Radiofrequency ablation of renal tumors. Eur Radiol 14(8):1449–1455PubMedCrossRefGoogle Scholar
  63. 63.
    Cornelis F, Buy X, André M et al (2011) De novo renal tumors arising in kidney transplants: midterm outcome after percutaneous thermal ablation. Radiology 260(3):900–907PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Klinik für Diagnostische und Interventionelle RadiologieUniversitätsklinikum RWTH AachenAachenDeutschland
  2. 2.Helmholtz-Institut für Biomedizinische Technik, AME - Interventionelle TherapietechnikRWTH AachenAachenDeutschland

Personalised recommendations