Advertisement

Der Radiologe

, Volume 52, Issue 3, pp 235–242 | Cite as

Multiparametrische MRT der Prostata zum Therapiemonitoring nach Strahlentherapie

  • A.M. Weidner
  • D.J. Dinter
  • M. Bohrer
  • M. Sertdemir
  • D. Hausmann
  • F. Wenz
  • S.O. Schoenberg
Leitthema
  • 223 Downloads

Zusammenfassung

Klinisches/methodisches Problem

Für Patienten mit Prostatakarzinom stellt die Radiatio eine potenziell kurative lokale Therapieoption dar. Im Rahmen der Nachsorge nach lokal kurativ intendierter Therapie wird aktuell der Verlauf des PSA-Werts (PSA prostataspezifisches Antigen) kontrolliert, der Einsatz bildgebender Verfahren wird lediglich bei symptomatischen Patienten und/oder zur Planung einer Salvagetherapie empfohlen.

Radiologische Standardverfahren

Die MRT der Prostata stellt derzeit die Methode der Wahl zur lokalen Rezidivdiagnostik dar.

Leistungsfähigkeit

Insbesondere in Verbindung mit funktionellen Untersuchungstechniken zeigen Studien gute Ergebnisse in der Primärdiagnostik. Zum Einsatz der MRT der Prostata in der Rezidivsituation wurden bisher nur wenige Studien mit heterogenem Studiendesign publiziert. Auch die in der MRT nach Bestrahlung sichtbaren Veränderungen in den unterschiedlichen Modalitäten sind noch wenig evaluiert.

Empfehlung für die Praxis

Da die ersten Studienergebnisse auch bei Patienten nach Radiatio viel versprechend sind, sollte bei unklarem PSA-Anstieg und vorhandener Therapieoption eine MRT der Prostata zur Klärung der lokalen Situation in Betracht gezogen werden.

Schlüsselwörter

Prostatakarzinom Magnetresonanztomographie (MRT) Strahlentherapie Spektroskopie Nachsorge 

Multiparametric prostate MRI for follow-up monitoring after radiation therapy

Abstract

Clinical/methodical issue

Radiation therapy is a therapeutic option with curative intent for patients with prostate cancer. Monitoring of prostate-specific antigen (PSA) values is the current standard of care in the follow-up. Imaging is recommended only for symptomatic patients and/or for further therapeutic options.

Standard radiological methods

For detection of local recurrence magnetic resonance imaging (MRI) of the prostate is acknowledged as the method of choice.

Performance

Good results for primary diagnosis were found especially in combination with functional techniques, whereas in recurrent prostate cancer only few studies with heterogeneous study design are available for prostate MRI. Furthermore, changes in different MRI modalities due to radiation therapy have been insufficiently investigated to date.

Practical recommendations

As the initial results were promising prostate MRI and available therapeutic options for detection of local recurrence should be considered in patients with increased PSA.

Keywords

Prostate cancer Magnetic resonance imaging (MRI) Radiation therapy Spectroscopy Follow-up 

Notes

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Bloch BN, Lenkinski RE, Helbich TH et al (2007) Prostate postbrachytherapy seed distribution: comparison of high-resolution, contrast-enhanced, T1- and T2-weighted endorectal magnetic resonance imaging versus computed tomography: initial experience. Int J Radiat Oncol Biol Phys 69:70–78PubMedCrossRefGoogle Scholar
  2. 2.
    Chen Y-J, Pu Y-S, Chu W-C, Tseng W-Y (2011) Predicting Gleason scores of prostate cancer using combined trace apparent diffusion coefficient and tumor volume. Poster presented at the ISMRM 19th Annual Meeting, Palais des congrès de Montréal, Montréal, Québec, Canada, May 7–13, 2011Google Scholar
  3. 3.
    Coakley FV, Hricak H, Wefer AE et al (2001) Brachytherapy for prostate cancer: endorectal MR imaging of local treatment-related changes. Radiology 219:817–821PubMedGoogle Scholar
  4. 4.
    Coakley FV, Teh HS, Qayyum A et al (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233:441–448PubMedCrossRefGoogle Scholar
  5. 5.
    De Visschere PJ, De Meerleer GO, Futterer JJ et al (2010) Role of MRI in follow-up after focal therapy for prostate carcinoma. AJR Am J Roentgenol 194:1427–1433CrossRefGoogle Scholar
  6. 6.
    Dinter DJ, Weidner AM, Wenz F et al (2010) Imaging diagnostics of the prostate. Urologe A 49:963–975PubMedCrossRefGoogle Scholar
  7. 7.
    Fonteyne V, Villeirs G, Speleers B et al (2008) Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 72:799–807PubMedCrossRefGoogle Scholar
  8. 8.
    Franiel T, Ludemann L, Taupitz M et al (2009) MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: the feasibility of monitoring of radiation-induced tissue changes using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Radiother Oncol 93:241–245PubMedCrossRefGoogle Scholar
  9. 9.
    Haider MA, Chung P, Sweet J et al (2008) Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys 70:425–430PubMedCrossRefGoogle Scholar
  10. 10.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499PubMedCrossRefGoogle Scholar
  11. 11.
    Heidenreich A, Aus G, Bolla M et al (2008) EAU guidelines on prostate cancer. Eur Urol 53:68–80PubMedCrossRefGoogle Scholar
  12. 12.
    Heijmink SW, Futterer JJ, Hambrock T et al (2007) Prostate cancer: body-array versus endorectal coil MR imaging at 3T – comparison of image quality, localization, and staging performance. Radiology 244:184–195PubMedCrossRefGoogle Scholar
  13. 13.
    Ippolito E, Mantini G, Morganti AG et al (2011) Intensity-modulated radiotherapy with simultaneous integrated boost to dominant intraprostatic lesion: preliminary report on toxicity. Am J Clin Oncol [Epub ahead of print]Google Scholar
  14. 14.
    Itou Y, Nakanishi K, Narumi Y et al (2011) Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging 33:167–172PubMedCrossRefGoogle Scholar
  15. 15.
    Joseph T, Mckenna DA, Westphalen AC et al (2009) Pretreatment endorectal magnetic resonance imaging and magnetic resonance spectroscopic imaging features of prostate cancer as predictors of response to external beam radiotherapy. Int J Radiat Oncol Biol Phys 73:665–671PubMedCrossRefGoogle Scholar
  16. 16.
    Kara T, Akata D, Akyol F et al (2011) The value of dynamic contrast-enhanced MRI in the detection of recurrent prostate cancer after external beam radiotherapy: correlation with transrectal ultrasound and pathological findings. Diagn Interv Radiol 17:38–43PubMedGoogle Scholar
  17. 17.
    Kim CK, Park BK, Lee HM (2009) Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging 29:391–397PubMedCrossRefGoogle Scholar
  18. 18.
    Kim CK, Park BK, Park W et al (2010) Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imaging 35:246–252PubMedCrossRefGoogle Scholar
  19. 19.
    Kim Y, Hsu IC, Lessard E et al (2008) Class solution in inverse planned HDR prostate brachytherapy for dose escalation of DIL defined by combined MRI/MRSI. Radiother Oncol 88:148–155PubMedCrossRefGoogle Scholar
  20. 20.
    Martino P, Scattoni V, Galosi AB et al (2011) Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J Urol 29:595–605PubMedCrossRefGoogle Scholar
  21. 21.
    Moman MR, Van Den Berg CA, Boeken Kruger AE et al (2010) Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. Int J Radiat Oncol Biol Phys 76:741–746PubMedCrossRefGoogle Scholar
  22. 22.
    Pickett B, Kurhanewicz J, Coakley F et al (2004) Use of MRI and spectroscopy in evaluation of external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 60:1047–1055PubMedCrossRefGoogle Scholar
  23. 23.
    Pickett B, Ten Haken RK, Kurhanewicz J et al (2004) Time to metabolic atrophy after permanent prostate seed implantation based on magnetic resonance spectroscopic imaging. Int J Radiat Oncol Biol Phys 59:665–673PubMedCrossRefGoogle Scholar
  24. 24.
    Pouliot J, Kim Y, Lessard E et al (2004) Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 59:1196–1207PubMedCrossRefGoogle Scholar
  25. 25.
    Pucar D, Hricak H, Shukla-Dave A et al (2007) Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 69:62–69PubMedCrossRefGoogle Scholar
  26. 26.
    Pucar D, Shukla-Dave A, Hricak H et al (2005) Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy – initial experience. Radiology 236:545–553PubMedCrossRefGoogle Scholar
  27. 27.
    Roach M 3rd, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974PubMedCrossRefGoogle Scholar
  28. 28.
    Rouviere O, Valette O, Grivolat S et al (2004) Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor – correlation with biopsy findings. Urology 63:922–927PubMedCrossRefGoogle Scholar
  29. 29.
    Schouten MG, Nagel NA, Hambrock T et al (2011) Apparent diffusion coefficient values during magnetic resonance -guided biopsy of the prostate: correlation with histological results. Poster presented at the ISMRM 19th Annual Meeting, Palais des Congrès de Montréal, Montréal, Québec, Canada, May 7-13, 2011Google Scholar
  30. 30.
    Song I, Kim CK, Park BK et al (2010) Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3T. AJR Am J Roentgenol 194:W477–482PubMedCrossRefGoogle Scholar
  31. 31.
    Tamada T, Sone T, Jo Y et al (2011) Locally recurrent prostate cancer after high-dose-rate brachytherapy: the value of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging in localizing tumors. AJR Am J Roentgenol 197:408–414PubMedCrossRefGoogle Scholar
  32. 32.
    Turkbey B, Shah VP, Pang Y et al (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258:488–495PubMedCrossRefGoogle Scholar
  33. 33.
    Van Lin EN, Futterer JJ, Heijmink SW et al (2006) IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 65:291–303CrossRefGoogle Scholar
  34. 34.
    Wang L, Hricak H, Kattan MW et al (2007) Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology 242:182–188PubMedCrossRefGoogle Scholar
  35. 35.
    Warren KS, Mcfarlane JP (2007) Is routine digital rectal examination required for the followup of prostate cancer? J Urol 178:115–119PubMedCrossRefGoogle Scholar
  36. 36.
    Weidner A, Michaely HJ, Pelzer A et al (2010) Imaging of prostate cancer by diagnostic radiology and nuclear medicine. Akt Urol 41:35–42Google Scholar
  37. 37.
    Weidner AM, Van Lin EN, Dinter DJ et al (2011) Ferumoxtran-10 MR lymphography for target definition and follow-up in a patient undergoing image-guided, dose-escalated radiotherapy of lymph nodes upon PSA relapse. Strahlenther Onkol 187:206–212PubMedCrossRefGoogle Scholar
  38. 38.
    Westphalen AC, Coakley FV, Roach M 3rd et al (2010) Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology 256:485–492PubMedCrossRefGoogle Scholar
  39. 39.
    Westphalen AC, Kurhanewicz J, Cunha RM et al (2009) T2-weighted endorectal magnetic resonance imaging of prostate cancer after external beam radiation therapy. Int Braz J Urol 35:171–180, discussion 181–172PubMedCrossRefGoogle Scholar
  40. 40.
    Woodfield CA, Tung GA, Grand DJ et al (2010) Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol 194:W316–322PubMedCrossRefGoogle Scholar
  41. 41.
    Yakar D, Hambrock T, Huisman H et al (2010) Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest Radiol 45:121–125PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A.M. Weidner
    • 1
  • D.J. Dinter
    • 1
  • M. Bohrer
    • 1
  • M. Sertdemir
    • 1
  • D. Hausmann
    • 1
  • F. Wenz
    • 1
  • S.O. Schoenberg
    • 1
  1. 1.Institut für Klinische Radiologie und NuklearmedizinUniversitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität HeidelbergMannheimDeutschland

Personalised recommendations