Der Radiologe

, Volume 52, Issue 3, pp 213–221

Bildgeführte Strahlentherapie

  • J. Boda-Heggemann
  • M. Guckenberger
  • U. Ganswindt
  • C. Belka
  • H. Wertz
  • M. Blessing
  • F. Wenz
  • M. Fuss
  • F. Lohr
Leitthema

Zusammenfassung

Die Strahlentherapie hat in den vergangenen 2 Dekaden von zahlreichen technischen Entwicklungen profitiert. Neue Bildgebungsmodalitäten wie Positronenemissionstomographie (PET, PET/CT) und hochauflösende morphologische und funktionelle MR-Sequenzen wurden in den Bestrahlungsplanungsprozess integriert. Die bildgesteuerte Strahlentherapie („image-guided radiation therapy“, IGRT) ermöglicht mittlerweile unmittelbar am Beschleuniger auch die 3-D-Darstellung von Weichgewebetumoren und ersetzt die Patientenpositionierung mittels Hautmarkern, rahmenbasierten stereotaktischen Verfahren im Kopf- und Körperstamm und teilweise auch die 2-D-Verifikation der Bestrahlungsfelder. IGRT gestattet die Realisierung des vollen Potenzials fortgeschrittener Bestrahlungstechniken wie der intensitätsmodulierten Strahlentherapie, mit deren Hilfe hochkonformale Dosisverteilungen realisiert werden können. Diese Strategien haben zu verbesserten klinischen Ergebnissen geführt und weitere Fortschritte sind zu erwarten.

Schlüsselwörter

Bildgeführte Strahlentherapie Stereotaxie Präzision Zielvolumina Risikoorgane 

Image-guided radiation therapy

Abstract

Radiotherapy technology has improved rapidly over the past two decades. New imaging modalities, such as positron emission (computed) tomography (PET, PET-CT) and high-resolution morphological and functional magnetic resonance imaging (MRI) have been introduced into the treatment planning process. Image-guided radiation therapy (IGRT) with 3D soft tissue depiction directly imaging target and normal structures, is currently replacing patient positioning based on patient surface markers, frame-based intracranial and extracranial stereotactic treatment and partially also 2D field verification methods. On-line 3D soft tissue-based position correction unlocked the full potential of new delivery techniques, such as intensity-modulated radiotherapy, by safely delivering highly conformal dose distributions that facilitate dose escalation and hypofractionation. These strategies have already resulted in better clinical outcomes, e.g. in prostate and lung cancer and are expected to further improve radiotherapy results.

Keywords

Image-guided radiation therapy (IGRT) Stereotactic body radiation therapy (SBRT) Accuracy Target volumes High-risk organs 

Literatur

  1. 1.
    Gehler B, Paulsen F, Oksuz MO et al (2009) [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol 4:56CrossRefPubMedGoogle Scholar
  2. 2.
    Niyazi M, Geisler J, Siefert A et al (2011) FET-PET for malignant glioma treatment planning. Radiother Oncol 99(1):44–48CrossRefPubMedGoogle Scholar
  3. 3.
    Weidner AM, Michaely HJ, Lemke A et al (2011) Value of multiparametric prostate MRI of the peripheral zone. Z Med Phys 21(3):198–205PubMedGoogle Scholar
  4. 4.
    Jonsson JH, Brynolfsson P, Garpebring A et al (2011) Registration accuracy for MR images of the prostate using a subvolume based registration protocol. Radiat Oncol 6:73CrossRefPubMedGoogle Scholar
  5. 5.
    Niyazi M, Bartenstein P, Belka C, Ganswindt U (2011) Choline PET based dose-painting in prostate cancer – modelling of dose effects. Radiat Oncol 5:23CrossRefGoogle Scholar
  6. 6.
    Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86CrossRefPubMedGoogle Scholar
  7. 7.
    MacManus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91(1):85–94CrossRefPubMedGoogle Scholar
  8. 8.
    Sura S, Greco C, Gelblum D et al (2008) (18) F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 70(5):1397–1402CrossRefPubMedGoogle Scholar
  9. 9.
    Videtic GM, Rice TW, Murthy S et al (2008) Utility of positron emission tomography compared with mediastinoscopy for delineating involved lymph nodes in stage III lung cancer: insights for radiotherapy planning from a surgical cohort. Int J Radiat Oncol Biol Phys 72(3):702–706CrossRefPubMedGoogle Scholar
  10. 10.
    Ganswindt U, Schilling D, Muller AC et al (2011) Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int J Radiat Oncol Biol Phys 79(5):1364–1372CrossRefPubMedGoogle Scholar
  11. 11.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRefPubMedGoogle Scholar
  12. 12.
    Weidner AM, Lin EN van, Dinter DJ et al (2011) Ferumoxtran-10 MR lymphography for target definition and follow-up in a patient undergoing image-guided, dose-escalated radiotherapy of lymph nodes upon PSA relapse. Strahlenther Onkol 187(3):206–212CrossRefPubMedGoogle Scholar
  13. 13.
    Hatakenaka M, Nakamura K, Yabuuchi H et al (2011) Pretreatment apparent diffusion coefficient of the primary lesion correlates with local failure in head-and-neck cancer treated with chemoradiotherapy or radiotherapy. Int J Radiat Oncol Biol Phys 81(2):339–345CrossRefPubMedGoogle Scholar
  14. 14.
    Lordick F, Ott K, Krause BJ et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8(9):797–805CrossRefPubMedGoogle Scholar
  15. 15.
    Arabi M, Piert M (2010) Hypoxia PET/CT imaging: implications for radiation oncology. Q J Nucl Med Mol Imaging 54(5):500–509PubMedGoogle Scholar
  16. 16.
    Truong MT, Saito N, Ozonoff A et al (2011) Prediction of locoregional control in head and neck squamous cell carcinoma with serial CT perfusion during radiotherapy. AJNR Am J Neuroradiol 32(7):1195–1201CrossRefPubMedGoogle Scholar
  17. 17.
    Graham SA, Moseley DJ, Siewerdsen JH, Jaffray DA (2007) Compensators for dose and scatter management in cone-beam computed tomography. Med Phys 34(7):2691–2703CrossRefPubMedGoogle Scholar
  18. 18.
    Siewerdsen JH, Jaffray DA (2001) Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys 28(2):220–231CrossRefPubMedGoogle Scholar
  19. 19.
    Meyer J, Wilbert J, Baier K et al (2007) Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table. Int J Radiat Oncol Biol Phys 67(4):1220–1228CrossRefPubMedGoogle Scholar
  20. 20.
    Wilbert J, Baier K, Richter A et al (2010) Influence of continuous table motion on patient breathing patterns. Int J Radiat Oncol Biol Phys 77(2):622–629CrossRefPubMedGoogle Scholar
  21. 21.
    Walter C, Boda-Heggemann J et al (2007) Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother Oncol 85(3):418–423CrossRefPubMedGoogle Scholar
  22. 22.
    Walter C, Boda-Heggemann J, Wertz H et al (2006) In vivo dose measurements of extra dose from cone-beam computed tomography. Int J Radiat Oncol Biol Phys 66(2):632PubMedGoogle Scholar
  23. 23.
    http://www.ssk.de/de/werke/2010/volltext/ssk1005.pdfGoogle Scholar
  24. 24.
    Zelefsky MJ, Crean D, Mageras GS et al (1999) Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. Radiother Oncol 50(2):225–234CrossRefPubMedGoogle Scholar
  25. 25.
    McGrath S, Kestin L, Dilworth J et al (2008) Adaptive image-guided radiotherapy (IGRT) eliminates the risk of geometric miss due to rectal distention in prostate cancer treatment planning: biochemical and clinical evidence of efficacy. Int J Radiat Oncol Biol Phys 72(1 Suppl 1):S324–S324CrossRefGoogle Scholar
  26. 26.
    Bohrer M, Schroder P, Welzel G et al (2008) Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT (B-mode acquisition and targeting system) for prostate cancer. Strahlenther Onkol 184(12):674–678CrossRefPubMedGoogle Scholar
  27. 27.
    Chung HT, Xia P, Chan LW et al (2009) Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys 73(1):53–60CrossRefPubMedGoogle Scholar
  28. 28.
    Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186:535–543CrossRefPubMedGoogle Scholar
  29. 29.
    Timmerman R, Paulus R, Galvin J et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303(11):1070–1076CrossRefPubMedGoogle Scholar
  30. 30.
    Grills IS, Hope AJ, Guckenberger M et al (2010) A multinational pooled analysis of 434 cases of stage I non-small cell lung cancer (NSCLC) treated with volumetrically image-guided (VIGRT) stereotactic lung radiotherapy (SBRT): results from the Elekta Collaborative Lung Research Group. J Clin Oncol 28(15 suppl):7015 (meeting abstracts)CrossRefGoogle Scholar
  31. 31.
    Onishi H, Shirato H, Nagata Y et al (2010) Stereotactic body radiotherapy (SBRT) for operable stage i non-small-cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol Biol Phys [Epub ahead of print]Google Scholar
  32. 32.
    Liao ZX, Komaki RR, Thames HD Jr et al (2010) Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 76(3):775–781CrossRefPubMedGoogle Scholar
  33. 33.
    Boda-Heggemann J, Walter C, Rahn A et al (2006) Repositioning accuracy of two different mask systems-3D revisited: comparison using true 3D/3D matching with cone-beam CT. Int J Radiat Oncol Biol Phys 66(5):1568–1575CrossRefPubMedGoogle Scholar
  34. 34.
    Breneman JC, Steinmetz R, Smith A et al (2009) Frameless image-guided intracranial stereotactic radiosurgery: clinical outcomes for brain metastases. Int J Radiat Oncol Biol Phys 74(3):702–706CrossRefPubMedGoogle Scholar
  35. 35.
    Den RB, Doemer A, Kubicek G et al (2010) Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study. Int J Radiat Oncol Biol Phys 76(5):1353–1359CrossRefPubMedGoogle Scholar
  36. 36.
    Rasmussen KH, Hardcastle N, Howard SP, Tome WA (2010) Reirradiation of glioblastoma through the use of a reduced dose rate on a tomotherapy unit. Technol Cancer Res Treat 9(4):399–406PubMedGoogle Scholar
  37. 37.
    Fuss M, Salter BJ, Cavanaugh SX et al (2004) Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 59(4):1245–1256CrossRefPubMedGoogle Scholar
  38. 38.
    Lattanzi J, McNeeley S, Pinover W et al (1999) A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol Biol Phys 43(4):719–725CrossRefPubMedGoogle Scholar
  39. 39.
    Lohr F, Fuss M, Tiefenbacher U et al (2004) Optimizing the use of radiotherapy with IMRT and image guided location of advanced prostate cancer. Urologe A 43(1):43–51CrossRefPubMedGoogle Scholar
  40. 40.
    Chandra A, Dong L, Huang E et al (2003) Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys 56(2):436–447CrossRefPubMedGoogle Scholar
  41. 41.
    Drever LA, Hilts M (2007) Daily quality assurance phantom for ultrasound image guided radiation therapy. J Appl Clin Med Phys 8(3):2467CrossRefPubMedGoogle Scholar
  42. 42.
    Wein W, Roper B, Navab N (2005) Automatic registration and fusion of ultrasound with CT for radiotherapy. Med Image Comput Comput Assist Interv 8(Pt 2):303–311PubMedGoogle Scholar
  43. 43.
    Gunther M, Feinberg DA (2004) Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med 52(1):27–32CrossRefPubMedGoogle Scholar
  44. 44.
    Hsu A, Miller NR, Evans PM et al (2005) Feasibility of using ultrasound for real-time tracking during radiotherapy. Med Phys 32(6):1500–1512CrossRefPubMedGoogle Scholar
  45. 45.
    Fung AY, Ayyangar KM, Djajaputra D et al (2006) Ultrasound-based guidance of intensity-modulated radiation therapy. Med Dosim 31(1):20–29CrossRefPubMedGoogle Scholar
  46. 46.
    Boda-Heggemann J, Kohler FM, Kupper B et al (2008) Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70(4):1247–1255CrossRefPubMedGoogle Scholar
  47. 47.
    Boda-Heggemann J, Mennemeyer P, Wertz H et al (2009) Accuracy of ultrasound-based image guidance for daily positioning of the upper abdomen: an online comparison with cone beam CT. Int J Radiat Oncol Biol Phys 74(3):892–897CrossRefPubMedGoogle Scholar
  48. 48.
    Bohrer M, Schroder P, Welzel G et al (2008) Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT trade mark (B-mode acquisition and targeting system) for prostate cancer. Strahlenther Onkol 184(12):674–678CrossRefPubMedGoogle Scholar
  49. 49.
    Sawada A, Yoda K, Kokubo M et al (2004) A technique for noninvasive respiratory gated radiation treatment system based on a real time 3D ultrasound image correlation: a phantom study. Med Phys 31(2):245–250CrossRefPubMedGoogle Scholar
  50. 50.
    Boda-Heggemann J, Walter C, Mai S et al (2006) Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound. Strahlenther Onkol 182(4):216–221CrossRefPubMedGoogle Scholar
  51. 51.
    Verellen D, Depuydt T, Gevaert T et al (2010) Gating and tracking, 4D in thoracic tumours. Cancer Radiother 14(6–7):446–454Google Scholar
  52. 52.
    Ford EC, Mageras GS, Yorke E, Ling CC (2003) Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 30(1):88–97CrossRefPubMedGoogle Scholar
  53. 53.
    Vedam SS, Keall PJ, Kini VR et al (2003) Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 48(1):45–62CrossRefPubMedGoogle Scholar
  54. 54.
    Guckenberger M, Wilbert J, Krieger T et al (2007) Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 69(1):276–285CrossRefPubMedGoogle Scholar
  55. 55.
    Guckenberger M, Kavanagh A, Webb S, Brada M (2011) A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept – a compromise between small safety margins and long duty cycles. Radiother Oncol [Epub ahead of print]Google Scholar
  56. 56.
    Koste JR de, Lagerwaard FJ, Boer HC de et al (2003) Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Biol Phys 55(5):1394–1399CrossRefPubMedGoogle Scholar
  57. 57.
    Matney JE, Parker BC, Neck DW et al (2011) Target localization accuracy in a respiratory phantom using BrainLAB ExacTrac and 4DCT imaging. J Appl Clin Med Phys 12(2):3296PubMedGoogle Scholar
  58. 58.
    Sonke JJ, Zijp L, Remeijer P, Van Herk M (2005) Respiratory correlated cone beam CT. Med Phys 32(4):1176–1186CrossRefPubMedGoogle Scholar
  59. 59.
    George R, Suh Y, Murphy M et al (2008) On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Med Phys 35(6):2356–2365CrossRefPubMedGoogle Scholar
  60. 60.
    Dawson LA, Eccles C, Bissonnette JP, Brock KK (2005) Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys 62(4):1247–1252CrossRefPubMedGoogle Scholar
  61. 61.
    Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919CrossRefPubMedGoogle Scholar
  62. 62.
    McNair HA, Brock J, Symonds-Tayler JR et al (2009) Feasibility of the use of the active breathing coordinator (ABC) in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC). Radiother Oncol 93(3):424–429CrossRefPubMedGoogle Scholar
  63. 63.
    Panakis N, McNair HA, Christian JA et al (2008) Defining the margins in the radical radiotherapy of non-small cell lung cancer (NSCLC) with active breathing control (ABC) and the effect on physical lung parameters. Radiother Oncol 87(1):65–73CrossRefPubMedGoogle Scholar
  64. 64.
    Partridge M, Tree A, Brock J et al (2009) Improvement in tumour control probability with active breathing control and dose escalation: a modelling study. Radiother Oncol 91(3):325–329CrossRefPubMedGoogle Scholar
  65. 65.
    Eccles C, Brock KK, Bissonnette JP et al (2006) Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy. Int J Radiat Oncol Biol Phys 64(3):751–759CrossRefPubMedGoogle Scholar
  66. 66.
    Koshani R, Balter JM, Hayman JA et al (2006) Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). Int J Radiat Oncol Biol Phys 65(5):1553–1559CrossRefPubMedGoogle Scholar
  67. 67.
    Korreman SS, Juhler-Nottrup T, Boyer AL (2008) Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol 86(1):61–68CrossRefPubMedGoogle Scholar
  68. 68.
    Boda-Heggemann J, Fleckenstein J, Lohr F et al (2011) Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors: simulation with a dynamic phantom and first patient data. Radiother Oncol 98(3):309–316CrossRefPubMedGoogle Scholar
  69. 69.
    Blessing M, Stsepankou, D, Lohr F et al (2008) Fast on-board Imaging based on combined kilovoltage megavoltage cone-beam reconstruction. Int J Radiat Oncol Biol Phys 72(Suppl 1):613CrossRefGoogle Scholar
  70. 70.
    Wertz H, Stsepankou D, Blessing M et al (2010) Fast kilovoltage/megavoltage (kV/MV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer. Phys Med Biol 55(15):4203–4217CrossRefPubMedGoogle Scholar
  71. 71.
    Wurm RE, Gum F, Erbel S et al (2006) Image guided respiratory gated hypofractionated stereotactic body radiation therapy (H-SBRT) for liver and lung tumors: Initial experience. Acta Oncol 45(7):881–889CrossRefPubMedGoogle Scholar
  72. 72.
    Gendrin C, Furtado H, Weber C et al (2011) Monitoring tumor motion by real time 2D/3D registration during radiotherapy. Radiother Oncol, in pressGoogle Scholar
  73. 73.
    Kamino Y, Takayama K, Kokubo M et al (2006) Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 66(1):271–278CrossRefPubMedGoogle Scholar
  74. 74.
    Murphy MJ, Cox RS (1996) The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys 23(12):2043–2049CrossRefPubMedGoogle Scholar
  75. 75.
    Lu W, Chen M, Ruchala KJ et al (2009) Real-time motion-adaptive-optimization (MAO) in tomo therapy. Phys Med Biol 54(14):4373–4398CrossRefPubMedGoogle Scholar
  76. 76.
    D’Souza WD, Naqvi SA, Yu CX (2005) Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys Med Biol 50(17):4021–4033CrossRefGoogle Scholar
  77. 77.
    Wilbert J, Meyer J, Baier K et al (2008) Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing. Med Phys 35(9):3911–3921CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Boda-Heggemann
    • 1
  • M. Guckenberger
    • 2
  • U. Ganswindt
    • 3
  • C. Belka
    • 3
  • H. Wertz
    • 1
  • M. Blessing
    • 1
  • F. Wenz
    • 1
  • M. Fuss
    • 4
  • F. Lohr
    • 1
  1. 1.Klinik für Strahlentherapie und RadioonkologieUniversitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität HeidelbergMannheimDeutschland
  2. 2.Klinik für StrahlentherapieUniversitätsklinikum WürzburgWürzburgDeutschland
  3. 3.Klinik für Strahlentherapie und RadioonkologieKlinikum der Ludwig-Maximilians-UniversitätMünchenDeutschland
  4. 4.Program in Image-guided Radiation Therapy, Department of Radiation MedicineOregon Health & Science UniversityPortlandUSA

Personalised recommendations