Advertisement

Der Radiologe

, Volume 51, Issue 4, pp 285–292 | Cite as

„Mild cognitive impairment“

Diagnostische Wertigkeit verschiedener MR-Techniken
  • T. HauserEmail author
  • P.A. Thomann
  • B. Stieltjes
  • M. Essig
Leitthema
  • 305 Downloads

Zusammenfassung

Angesichts einer immer älter werdenden Bevölkerung sind wir mit dem Problem einer zunehmenden Zahl an Patienten mit Demenzerkrankungen konfrontiert. In der Frühdiagnostik einer Demenz spielen neben klinischen, neuropsychologischen und laborchemischen Untersuchungen nichtinvasive Bildgebungsverfahren wie die MRT eine bedeutende Rolle. Wichtig ist dabei die Frühdiagnostik einer Demenz bereits im Vorstadium der leichten kognitiven Beeinträchtigung („mild cognitive impairment“, MCI), da dieses Krankheitsbild mit einem deutlich erhöhten Demenzrisiko einhergeht und durch eine frühzeitige Therapie der Krankheitsverlauf abgemildert oder deutlich verzögert werden kann. Neben morphologischen Veränderungen helfen verschiedene funktionelle MR-Verfahren bei der Frühdiagnostik einer Demenz. Darüber hinaus ist es von großer Bedeutung, diejenigen MCI-Patienten zu detektieren, die in besonderem Maße von einer Demenz bedroht sind. Bei der Differenzierung von Konvertern zu Nonkonvertern deuten erste Studien darauf hin, dass v. a. die voxelbasierte Morphometrie, die MR-Spektroskopie und die Diffusionstensorbildgebung wichtige Zusatzinformationen liefern könnten.

Schlüsselwörter

„Mild cognitive impairment“ (MCI) Voxelbasierte Morphometrie (VBM) Spektroskopie Perfusion Diffusionstensorbildgebung („diffusion tensor imaging“, DTI) 

Mild cognitive impairment

Diagnostic value of different MR techniques

Abstract

In view of an increasingly aging population the prevalence of dementia is also expected to increase rapidly. As well as clinical, neuropsychological and laboratory procedures magnetic resonance imaging (MRI) plays an important role in the early diagnosis of dementia which is important in the precursor stage of mild cognitive impairment (MCI). On the one hand this stage is associated with an increased risk of dementia and on the other hand an early treatment in this stage could attenuate development of the disease. In addition to morphological changes different functional MRI techniques can help in the early diagnosis of dementia and the precursor stages. Moreover, it is important to detect those MCI patients who are at particularly risk for developing dementia. In the differentiation of converters to non-converters initial studies suggest that particularly voxel-based morphometry, MR spectroscopy and diffusion tensor imaging can provide important additional information.

Keywords

Mild cognitive impairment (MCI) Voxel-based morphometry (VBM) Spectroscopy Perfusion Diffusion tensor imaging (DTI) 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Ackl N, Ising M, Schreiber YA et al (2005) Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 384:23–28PubMedCrossRefGoogle Scholar
  2. 2.
    Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 47:93–100PubMedCrossRefGoogle Scholar
  3. 3.
    Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  4. 4.
    Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613PubMedCrossRefGoogle Scholar
  5. 5.
    Bosch B, Arenaza-Urquijo EM, Rami L et al (2010) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging, in pressGoogle Scholar
  6. 6.
    Bottino CM, Castro CC, Gomes Rl et al (2002) Volumetric MRI measurements can differentiate Alzheimer’s disease, mild cognitive impairment, and normal aging. Int Psychogeriatr 14:59–72PubMedCrossRefGoogle Scholar
  7. 7.
    Bozzao A, Floris R, Baviera ME et al (2001) Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol 22:1030–1036PubMedGoogle Scholar
  8. 8.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259Google Scholar
  9. 9.
    Busse A, Bischkopf J, Riedel-Heller SG et al (2003) Mild cognitive impairment: prevalence and incidence according to different diagnostic criteria. Results of the Leipzig Longitudinal Study of the Aged (LEILA75+). Br J Psychiatry 182:449–454PubMedCrossRefGoogle Scholar
  10. 10.
    Cavallin L, Axelsson R, Wahlund LO et al (2008) Voxel-based correlation between coregistered single-photon emission computed tomography and dynamic susceptibility contrast magnetic resonance imaging in subjects with suspected Alzheimer disease. Acta Radiol 49:1154–1161PubMedCrossRefGoogle Scholar
  11. 11.
    Chantal S, Braun CM, Bouchard RW et al (2004) Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 1003:26–35PubMedCrossRefGoogle Scholar
  12. 12.
    Chao Ll, Buckley ST, Kornak J et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24:19–27PubMedCrossRefGoogle Scholar
  13. 13.
    Chao Ll, Pa J, Duarte A et al (2009) Patterns of cerebral hypoperfusion in amnestic and dysexecutive MCI. Alzheimer Dis Assoc Disord 23:245–252PubMedCrossRefGoogle Scholar
  14. 14.
    Chen TF, Lin CC, Chen YF et al (2009) Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res 173:15–21PubMedCrossRefGoogle Scholar
  15. 15.
    Cherubini A, Peran P, Spoletini I et al (2010) Combined volumetry and DTI in subcortical structures of mild cognitive impairment and Alzheimer’s disease patients. J Alzheimers Dis 19:1273–1282PubMedGoogle Scholar
  16. 16.
    Cohen RM (2007) The application of positron-emitting molecular imaging tracers in Alzheimer’s disease. Mol Imaging Biol 9:204–216PubMedCrossRefGoogle Scholar
  17. 17.
    Dai W, Lopez OL, Carmichael OT et al (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866PubMedCrossRefGoogle Scholar
  18. 18.
    De Leon MI, Mosconi L, Li J et al (2007) Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J Neurol 254:1666–1675CrossRefGoogle Scholar
  19. 19.
    Di Paola M, Di Iulio F, Cherubini A et al (2010) When, where, and how the corpus callosum changes in MCI and AD: a multimodal MRI study. Neurology 74:1136–1142CrossRefGoogle Scholar
  20. 20.
    Du AT, Schuff N, Amend D et al (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 71:441–447PubMedCrossRefGoogle Scholar
  21. 21.
    Fayed N, Davila J, Oliveros A et al (2008) Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol 15:1089–1098PubMedCrossRefGoogle Scholar
  22. 22.
    Fellgiebel A, Dellani PR, Greverus D et al (2006) Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Res 146:283–287PubMedCrossRefGoogle Scholar
  23. 23.
    Fellgiebel A, Wille P, Muller MI et al (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18:101–108PubMedCrossRefGoogle Scholar
  24. 24.
    Ferreira LK, Diniz BS, Forlenza OV et al (2009) Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging [Epub ahead of print]Google Scholar
  25. 25.
    Franczak M, Prost RW, Antuono PG et al (2007) Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. J Comput Assist Tomogr 31:666–670PubMedCrossRefGoogle Scholar
  26. 26.
    Garcia Santos JM, Gavrila D, Antunez C et al (2008) Magnetic resonance spectroscopy performance for detection of dementia, Alzheimer’s disease and mild cognitive impairment in a community-based survey. Dement Geriatr Cogn Disord 26:15–25CrossRefGoogle Scholar
  27. 27.
    Griffith HR, Stewart CC, Den Hollander JA (2009) Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment. Int Rev Neurobiol 84:105–131PubMedCrossRefGoogle Scholar
  28. 28.
    Hagen T, Bartylla K, Stoll M et al (1997) Perfusion-MRI in cerebral infarct. Radiologe 37:865–870PubMedCrossRefGoogle Scholar
  29. 29.
    Hahnel S, Jost G, Knauth M et al (2004) Current use and possible future applications of the magnetization transfer technique in neuroradiology. Rofo 176:175–182PubMedGoogle Scholar
  30. 30.
    Hanyu H, Asano T, Iwamoto T et al (2000) Magnetization transfer measurements of the hippocampus in patients with Alzheimer’s disease, vascular dementia, and other types of dementia. AJNR Am J Neuroradiol 21:1235–1242PubMedGoogle Scholar
  31. 31.
    Hanyu H, Asano T, Sakurai H et al (1999) Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci 167:37–44PubMedCrossRefGoogle Scholar
  32. 32.
    Harris GJ, Lewis RF, Satlin A et al (1998) Dynamic susceptibility contrast MR imaging of regional cerebral blood volume in Alzheimer disease: a promising alternative to nuclear medicine. AJNR Am J Neuroradiol 19:1727–1732PubMedGoogle Scholar
  33. 33.
    Hauser T, Gerigk L, Giesel F et al (2010) MR spectroscopy in dementia. Radiologe 50:791–798PubMedCrossRefGoogle Scholar
  34. 34.
    Hentschel F, Kreis M, Damian M et al (2004) Does magnetization transfer ratio (MTR) contribute to the diagnosis and differential diagnosis of the dementias? Rofo 176:1743–1749PubMedGoogle Scholar
  35. 35.
    Jernigan Tl, Salmon DP, Butters N et al (1991) Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29:68–81PubMedCrossRefGoogle Scholar
  36. 36.
    Jessen F, Gur O, Block W et al (2009) A multicenter (1) H-MRS study of the medial temporal lobe in AD and MCI. Neurology 72:1735–1740PubMedCrossRefGoogle Scholar
  37. 37.
    Jessen F, Traeber F, Freymann K et al (2006) Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology 67:528–530PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson NA, Jahng GH, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859PubMedCrossRefGoogle Scholar
  39. 39.
    Kabani NJ, Sled JG, Chertkow H (2002) Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage 15:604–610PubMedCrossRefGoogle Scholar
  40. 40.
    Kabani NJ, Sled JG, Shuper A et al (2002) Regional magnetization transfer ratio changes in mild cognitive impairment. Magn Reson Med 47:143–148PubMedCrossRefGoogle Scholar
  41. 41.
    Kantarci K (2007) 1H magnetic resonance spectroscopy in dementia. Br J Radiol 80 Spec No 2:S146–S152CrossRefGoogle Scholar
  42. 42.
    Kantarci K, Jack CR Jr, Xu YC et al (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217PubMedGoogle Scholar
  43. 43.
    Kantarci K, Knopman DS, Dickson DW et al (2008) Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248:210–220PubMedCrossRefGoogle Scholar
  44. 44.
    Kantarci K, Reynolds G, Petersen RC et al (2003) Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol 24:843–849PubMedGoogle Scholar
  45. 45.
    Kantarci K, Weigand SD, Petersen RC et al (2007) Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 28:1330–1339PubMedCrossRefGoogle Scholar
  46. 46.
    Karas G, Sluimer J, Goekoop R et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 29:944–949PubMedCrossRefGoogle Scholar
  47. 47.
    Kiefer C, Brockhaus L, Cattapan-Ludewig K et al (2009) Multi-parametric classification of Alzheimer’s disease and mild cognitive impairment: the impact of quantitative magnetization transfer MR imaging. Neuroimage 48:657–667PubMedCrossRefGoogle Scholar
  48. 48.
    Kiuchi K, Morikawa M, Taoka T et al (2009) Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer’s disease: a diffusion tensor tractography study. Brain Res 1287:184–191PubMedCrossRefGoogle Scholar
  49. 49.
    Klunk WE, Panchalingam K, Moossy J et al (1992) N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42:1578–1585PubMedGoogle Scholar
  50. 50.
    Liu Y, Spulber G, Lehtimaki KK et al (2009) Diffusion tensor imaging and tract-based spatial statistics in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging [Epub ahead of print]Google Scholar
  51. 51.
    Luckhaus C, Flub MO, Wittsack HJ et al (2008) Detection of changed regional cerebral blood flow in mild cognitive impairment and early Alzheimer’s dementia by perfusion-weighted magnetic resonance imaging. Neuroimage 40:495–503PubMedCrossRefGoogle Scholar
  52. 52.
    Mellon EA, Pilkinton DT, Clark CM et al (2009) Sodium MR imaging detection of mild Alzheimer disease: preliminary study. AJNR Am J Neuroradiol 30:978–984PubMedCrossRefGoogle Scholar
  53. 53.
    Metastasio A, Rinaldi P, Tarducci R et al (2006) Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy. Neurobiol Aging 27:926–932PubMedCrossRefGoogle Scholar
  54. 54.
    Modrego PJ, Fayed N, Pina MA (2005) Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry 162:667–675PubMedCrossRefGoogle Scholar
  55. 55.
    Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445PubMedGoogle Scholar
  56. 56.
    Pantel J, Kratz B, Essig M et al (2003) Parahippocampal volume deficits in subjects with aging-associated cognitive decline. Am J Psychiatry 160:379–382PubMedCrossRefGoogle Scholar
  57. 57.
    Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992PubMedCrossRefGoogle Scholar
  58. 58.
    Pilatus U, Lais C, Rochmont Adu M et al (2009) Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res 173:1–7PubMedCrossRefGoogle Scholar
  59. 59.
    Ramani A, Jensen JH, Helpern JA (2006) Quantitative MR imaging in Alzheimer disease. Radiology 241:26–44PubMedCrossRefGoogle Scholar
  60. 60.
    Ritchie K, Artero S, Touchon J (2001) Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 56:37–42PubMedGoogle Scholar
  61. 61.
    Santos VD, Thomann PA, Wustenberg T et al (2010) Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis, in pressGoogle Scholar
  62. 62.
    Seab JP, Jagust WI, Wong ST et al (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 8:200–208PubMedCrossRefGoogle Scholar
  63. 63.
    Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505PubMedCrossRefGoogle Scholar
  64. 64.
    Stieltjes B, Kaufmann WE, Van Zijl PC et al (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735PubMedCrossRefGoogle Scholar
  65. 65.
    Stieltjes B, Schluter M, Didinger B et al (2006) Diffusion tensor imaging in primary brain tumors: reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model. Neuroimage 31:531–542PubMedCrossRefGoogle Scholar
  66. 66.
    Teipel SJ, Meindl T, Wagner M et al (2010) Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study. J Alzheimers Dis 22:507–522PubMedGoogle Scholar
  67. 67.
    Thomann PA, Dos Santos V, Toro P et al (2009) Reduced olfactory bulb and tract volume in early Alzheimer’s disease – a MRI study. Neurobiol Aging 30:838–841PubMedCrossRefGoogle Scholar
  68. 68.
    Thomann PA, Kaiser E, Schonknecht P et al (2009) Association of total tau and phosphorylated tau 181 protein levels in cerebrospinal fluid with cerebral atrophy in mild cognitive impairment and Alzheimer disease. J Psychiatry Neurosci 34:136–142PubMedGoogle Scholar
  69. 69.
    Trivedi MA, Wichmann AK, Torgerson BM et al (2006) Structural MRI discriminates individuals with mild cognitive impairment from age-matched controls: a combined neuropsychological and voxel based morphometry study. Alzheimers Dement 2:296–302PubMedCrossRefGoogle Scholar
  70. 70.
    Van der Flier WM, Van den Heuvel DM, Weverling-Rijnsburger AW et al (2002) Magnetization transfer imaging in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann Neurol 52:62–67CrossRefGoogle Scholar
  71. 71.
    Van Es AC, Van der Flier WM, Admiraal-Behloul F et al (2007) Lobar distribution of changes in gray matter and white matter in memory clinic patients: detected using magnetization transfer imaging. AJNR Am J Neuroradiol 28:1938–1942CrossRefGoogle Scholar
  72. 72.
    Xu G, Antuono PG, Jones J et al (2007) Perfusion fMRI detects deficits in regional CBF during memory-encoding tasks in MCI subjects. Neurology 69:1650–1656PubMedCrossRefGoogle Scholar
  73. 73.
    Zhuang L, Wen W, Zhu W et al (2010) White matter integrity in mild cognitive impairment: a tract-based spatial statistics study. Neuroimage 53:16–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • T. Hauser
    • 1
    Email author
  • P.A. Thomann
    • 2
  • B. Stieltjes
    • 1
  • M. Essig
    • 1
  1. 1.Abteilung E010 RadiologieDeutsches Krebsforschungszentrum (DKFZ) HeidelbergHeidelbergDeutschland
  2. 2.AG Strukturelle Bildgebung, Klinik für Allgemeine PsychiatrieZentrum für Psychosoziale Medizin, Universitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations