Der Radiologe

, Volume 50, Issue 11, pp 999–1007 | Cite as

Perspektiven der digitalen Mammographieplattform

  • R. Gruber
  • C.C. Riedl
  • M. Reisegger
  • K. Pinker
  • E. Sturm
  • F. Semturs
  • T.H. Helbich


Etwa jede neunte Frau in Europa erkrankt im Laufe ihres Lebens an Brustkrebs. Durch die Einführung von Mammographiescreeningprogrammen werden immer mehr kleine Brustkarzinome in einem frühen Stadium entdeckt. Die Einführung der digitalen Mammographie erzielt insbesondere bei bestimmten Patientinnengruppen eine weitere kontinuierliche Senkung der Brustkrebsmortalität. Zusätzlich ermöglicht die digitale Mammographie die Entwicklung neuer und Fusion bereits existierender bildgebender Methoden. Zu dieser „digitalen Mammographieplattform“ gehören die digitale Brusttomosynthese, die digitale Kontrastmittelmammographie und die digitale Kontrastmittel-Brusttomosynthese sowie fusionierte Datensätze der digitalen Mammographie mit dem Ultraschall oder der MRT. Diese innovativen Techniken bieten die Möglichkeit, die Sensitivität der Mammographie zu steigern und die Brustkrebsmortalität weiter zu senken. Der folgende Artikel fasst diese neuen Anwendungen zusammen, beschreibt die Stärken der digitalen Plattform und veranschaulicht den potenziellen Vorteil einer verbesserten Brustkrebsfrüherkennung durch die digitale Mammographie.


Brust Digitale Mammographie Tomosynthese Kontrastmittelmammographie Fusionstechnik 

Perspectives of the digital mammography platform


In Europe one out of every nine women suffers from breast cancer during her lifetime. Since the introduction of mammography screening programs more breast cancers are being diagnosed when they are still small and early stage cancers with a favourable prognosis. The introduction of digital mammography systems has led to a continuous reduction of breast cancer mortality especially in specific patient subgroups. Furthermore, the digital mammography platform enables the development of new, innovative breast imaging methods to increase sensitivity and decrease breast cancer mortality. This digital mammography platform includes digital breast tomosynthesis, digital contrast medium mammography and digital contrast medium breast tomosynthesis as well as fused data sets from digital mammography with ultrasound or MRI. The following article summarizes these new applications, describes the strengths of the digital platform and illustrates the potential advantages of an improved breast cancer diagnosis by digital mammography.


Breast Digital mammography Tomosynthesis Contrast medium mammography Fusion 



Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.


  1. 1.
    Lewin JM, Hendrick RE, D’Orsi CJ et al (2001) Comparison of full-field digital mammography with screen-film mammography for cancer detection: results of 4,945 paired examinations. Radiology 218:873–880PubMedGoogle Scholar
  2. 2.
    Pisano ED, Gatsonis C, Hendrick E et al (2005) Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353:1773–1783CrossRefPubMedGoogle Scholar
  3. 3.
    Riedl CC, Jaromi S, Floery D et al (2005) Potential of dose reduction after marker placement with full-field digital mammography. Invest Radiol 40:343–348CrossRefPubMedGoogle Scholar
  4. 4.
    Schueller G, Kaindl E, Langenberger H et al (2007) Validation of image quality in full-field digital mammography: is the replacement of wet by dry laser printers justified? Eur J Radiol 62:267–272CrossRefPubMedGoogle Scholar
  5. 5.
    Schueller G, Riedl CC, Mallek R et al (2008) Image quality, lesion detection, and diagnostic efficacy in digital mammography: full-field digital mammography versus computed radiography-based mammography using digital storage phosphor plates. Eur J Radiol 67:487–496CrossRefPubMedGoogle Scholar
  6. 6.
    Schueller G, Schueller-Weidekamm C, Pinker K et al (2009) Comparison of 5-megapixel cathode ray tube monitors and 5-megapixel liquid crystal monitors for soft-copy reading in full-field digital mammography. Eur J Radiol, in pressGoogle Scholar
  7. 7.
    Skaane P, Skjennald A (2004) Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program – the Oslo II Study. Radiology 232:197–204CrossRefPubMedGoogle Scholar
  8. 8.
    Skaane P, Young K, Skjennald A (2003) Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading – Oslo I study. Radiology 229:877–884CrossRefPubMedGoogle Scholar
  9. 9.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 324:1–8CrossRefPubMedGoogle Scholar
  10. 10.
    Baldwin P (2009) Digital breast tomosynthesis. Radiol Technol 81:57M–74MPubMedGoogle Scholar
  11. 11.
    Niklason LT, Christian BT, Niklason LE et al (1997) Digital tomosynthesis in breast imaging. Radiology 205:399–406PubMedGoogle Scholar
  12. 12.
    Rafferty EA (2007) Digital mammography: novel applications. Radiol Clin North Am 45:831–843, viiCrossRefPubMedGoogle Scholar
  13. 13.
    Schulz-Wendtland R, Hermann KP, Wacker T, Bautz W (2008) Current situation and future perspectives of digital mammography. Radiologe 48:324–334CrossRefPubMedGoogle Scholar
  14. 14.
    Gennaro G, Toledano A, di Maggio C et al (2009) Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol 20:1545–1552CrossRefPubMedGoogle Scholar
  15. 15.
    Rafferty EA, Georgian-Smith D, Kopans DB et al (2002) Comparison of full-field digital tomosynthesis with two view conventional film screen mammography in the prediction of lesion malignancy [abstract]. In: Abstracts of the 88th Scientific Assembly and Annual Meeting of the Radiological Society of North America. Chicago (IL)Google Scholar
  16. 16.
    Rafferty EA, Kopans DB, Georgian-Smith D et al (2003) Comparison of full-field digital tomosynthesis and conventional two view film screen mammography in lesion detection and assessment of lesion conspicuity [abstract]. In: Abstracts of the 103rd Annual Meeting of the American Roentgen Ray Society. San Diego (CA)Google Scholar
  17. 17.
    Rafferty EA, Wu T, Moore RH et al (2003) Optimization of image acquisition and display algorithms to enhance visualization of microcalcifications during digital breast tomosynthesis [abstract]. In: Abstracts of the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America. Chicago (IL)Google Scholar
  18. 18.
    Rafferty EA, Niklason LT, Jameson-Meehan L (2006) Breast Tomosynthesis: one view or two? [abstract]. In: Abstracts of the 92nd Scientific Assembly and Annual Meeting of the Radiological Society of North America. Chicago (IL)Google Scholar
  19. 19.
    Teertstra HJ, Loo CE, van den Bosch MA et al (2010) Breast tomosynthesis in clinical practice: initial results. Eur Radiol 20:16–24CrossRefPubMedGoogle Scholar
  20. 20.
    Zuley ML, Bandos AI, Abrams GS et al (o J) Time to diagnosis and performance levels during repeat interpretations of digital breast tomosynthesis: preliminary observations. Acad Radiol 17:450–455Google Scholar
  21. 21.
    Andersson I, Ikeda DM, Zackrisson S et al (2008) Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BI-RADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 18:2817–2825CrossRefPubMedGoogle Scholar
  22. 22.
    Rafferty EA, Kopans DB, Georgian-Smith D et al (2003) Evaluation of the call-back rate for screening mammography using full-field digital tomosynthesis versus conventional film screen mammography [abstract]. In: Abstracts of the 103rd Annual Meeting of the American Roentgen Ray Society. San Diego (CA)Google Scholar
  23. 23.
    Diekmann F, Bick U (2007) Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography. Eur Radiol 17:3086–3092CrossRefPubMedGoogle Scholar
  24. 24.
    Reiser I, Nishikawa RM, Giger ML et al (2006) Computerized mass detection for digital breast tomosynthesis directly from the projection images. Med Phys 33:482–491CrossRefPubMedGoogle Scholar
  25. 25.
    Garrison JB, Grant DG, Guier WH, Johns RJ (1969) Three dimensional roentgenography. Am J Roentgenol Radium Ther Nucl Med 105:903–908PubMedGoogle Scholar
  26. 26.
    Miller ER, McCurry EM, Hruska B (1971) An infinite number of laminagrams from a finite number of radiographs. Radiology 98:249–255PubMedGoogle Scholar
  27. 27.
    Smith AP, Hall PA, Marcello DM (2004) Emerging technologies in breast cancer detection. Radiol Manage 26:16–24; quiz 25–17PubMedGoogle Scholar
  28. 28.
    Wu T, Moore RH, Rafferty EA, Kopans DB (2004) A comparison of reconstruction algorithms for breast tomosynthesis. Med Phys 31:2636–2647CrossRefPubMedGoogle Scholar
  29. 29.
    Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110PubMedGoogle Scholar
  30. 30.
    Chang CH, Nesbit DE, Fisher DR et al (1982) Computed tomographic mammography using a conventional body scanner. AJR Am J Roentgenol 138:553–558PubMedGoogle Scholar
  31. 31.
    Izzo L, Stasolla A, Basso L et al (2005) Characterization of tumoral lesions of the breast: preliminary experience with multislice spiral CT. J Exp Clin Cancer Res 24:209–215PubMedGoogle Scholar
  32. 32.
    Buadu LD, Murakami J, Murayama S et al (1996) Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 200:639–649PubMedGoogle Scholar
  33. 33.
    Gilles R, Guinebretiere JM, Lucidarme O et al (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631PubMedGoogle Scholar
  34. 34.
    Heywang SH, Wolf A, Pruss E et al (1989) MR imaging of the breast with Gd-DTPA: use and limitations. Radiology 171:95–103PubMedGoogle Scholar
  35. 35.
    Orel SG, Mendonca MH, Reynolds C et al (1997) MR imaging of ductal carcinoma in situ. Radiology 202:413–420PubMedGoogle Scholar
  36. 36.
    Westerhof JP, Fischer U, Moritz JD, Oestmann JW (1998) MR imaging of mammographically detected clustered microcalcifications: is there any value? Radiology 207:675–681PubMedGoogle Scholar
  37. 37.
    Schulz-Wendtland R, Fuchsjager M, Wacker T, Hermann KP (2009) Digital mammography: an update. Eur J Radiol 72:258–265CrossRefPubMedGoogle Scholar
  38. 38.
    Bornefalk H, Lewin JM, Danielsson M, Lundqvist M (2006) Single-shot dual-energy subtraction mammography with electronic spectrum splitting: feasibility. Eur J Radiol 60:275–278CrossRefPubMedGoogle Scholar
  39. 39.
    Jong RA, Yaffe MJ, Skarpathiotakis M et al (2003) Contrast-enhanced digital mammography: initial clinical experience. Radiology 228:842–850CrossRefPubMedGoogle Scholar
  40. 40.
    Behrenbruch CP, Marias K, Armitage PA et al (2004) Fusion of contrast-enhanced breast MR and mammographic imaging data. Br J Radiol 77 Spec No 2:S201–S208CrossRefGoogle Scholar
  41. 41.
    Dromain C, Balleyguier C, Muller S et al (2006) Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography. AJR Am J Roentgenol 187:W528–W537CrossRefPubMedGoogle Scholar
  42. 42.
    Lewin JM, Isaacs PK, Vance V, Larke FJ (2003) Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 229:261–268CrossRefPubMedGoogle Scholar
  43. 43.
    Chen SC, Carton AK, Albert M et al (2007) Initial clinical experience with contrast-enhanced digital breast tomosynthesis. Acad Radiol 14:229–238CrossRefPubMedGoogle Scholar
  44. 44.
    Sardanelli F, Calabrese M, Zandrino F et al (1998) Dynamic helical CT of breast tumors. J Comput Assist Tomogr 22:398–407CrossRefPubMedGoogle Scholar
  45. 45.
    Kapur A, Carson PL, Eberhard J et al (2004) Combination of digital mammography with semi-automated 3D breast ultrasound. Technol Cancer Res Treat 3:325–334PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. Gruber
    • 1
  • C.C. Riedl
    • 1
  • M. Reisegger
    • 1
  • K. Pinker
    • 1
  • E. Sturm
    • 1
  • F. Semturs
    • 1
  • T.H. Helbich
    • 1
  1. 1.Abteilung für Allgemeine Radiologie und Kinderradiologie, Division für Molekulare und Gender-Bildgebung, Universitätsklinik für RadiodiagnostikMedizinische Universität WienWienÖsterreich

Personalised recommendations