Der Radiologe

, Volume 50, Issue 4, pp 329–338

Ganzkörper-MRT und FDG-PET/CT in der bildgebenden onkologischen Diagnostik

Leitthema

Zusammenfassung

Die Ganzkörper-MRT (GK-MRT) ermöglicht im Gegensatz zu den etablierten sequenziellen, multimodalen diagnostischen Algorithmen eine onkologische Bildgebung mit einem systemischen Ansatz. Durch Innovationen auf dem Gebiet der Hardware, wie der Einführung von Ganzkörperscannern bei 1,5 und auch 3 Tesla in Kombination mit schnelleren Bildakquisitionstechniken ist die GK-MRT nun klinisch umsetzbar. Damit ist eine dedizierte Beurteilbarkeit individueller Organe mit unterschiedlichen Kontrasten, hoher räumlicher Auflösung und Kontrastmitteldynamik in Kombination mit der GK-Bildgebung möglich.

Mit der PET/CT können neben der morphologischen Bildgebung auch wichtige metabolische Informationen gewonnen werden, sodass dieses Verfahren beim initialen Staging verschiedener Tumoren sich etabliert hat, speziell zur Beurteilung von Lymphknotenmetastasen und Abschätzung der Tumorvitalität. Neue methodische Entwicklungen, wie die GK-MRT-Diffusionsbildgebung, haben das Potenzial, die diagnostische Genauigkeit der GK-MRT weiter zu verbessern. Die GK-MRT hat Vorteile bei der Detektion von Fernmetastasen, speziell bei Tumoren, die häufig in die Leber, Knochen oder das ZNS metastasieren, und stellt eine sinnvolle strahlenfreie Alternative zur Bildgebung pädiatrischer Tumorpatienten dar, bei denen häufig wiederholte Untersuchungen erforderlich sind.

Die GK-MRT eignet sich auch dazu, das gesamte Knochenmark in einem Untersuchungsgang darzustellen und liefert sehr genaue Informationen beim Staging maligner hämatologischer Erkrankungen, wie z. B. dem multiplen Myelom. In diesem Beitrag sollen aktuelle Entwicklungen und klinische Anwendungen der GK-MRT im Vergleich mit der PET/CT bei der onkologischen Bildgebung dargestellt werden.

Schlüsselwörter

Ganzkörperbildgebung Magnetresonanztomographie Positronenemissionstomographie Computertomographie Onkologie 

Whole-body MRI and FDG-PET/CT imaging diagnostics in oncology

Abstract

The advent of whole-body MRI (WB-MRI) has introduced a systemic approach to oncologic imaging compared to established sequential, multi-modal diagnostic algorithms. Hardware innovations, such as whole-body scanners at 1.5 Tesla and also recently 3 Tesla, combined with acquisition acceleration techniques, have made WB-MRI clinically feasible. With this method dedicated assessment of individual organs with various soft tissue contrast, high spatial resolution and contrast media dynamics can be combined with whole-body anatomic coverage.

PET/CT has established itself as a powerful modality in the staging of patients suffering from malignant tumors. In addition to the morphologic information provided by the CT component of this hybrid modality, the PET component contributes invaluable metabolic information, which greatly enhances accuracy in the assessment of lymphatic spread and viability of tumor tissue. Whole-body MR diffusion imaging is a novel and promising technique which may contribute to superior sensitivity in the detection of tumor manifestations. In the assessment of distant metastatic spread WB-MRI is highly sensitive and has advantages over PET/CT, especially in those tumors frequently spreading to the liver, bone or brain. WB-MRI is also very attractive as a radiation-free alternative for imaging of pediatric tumor patients in whom multiple follow-up examinations may be required.

WB-MRI allows for precise assessment of the bone marrow and has been proven to be highly accurate for the staging of hematologic diseases, such as multiple myeloma. In this article recent developments and applications of WB-MRI in oncologic imaging are addressed and compared to the results of PET/CT.

Keywords

Whole-body imaging Magnetic resonance imaging Positron emission tomography Computed tomography Oncology 

Literatur

  1. 1.
    Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379PubMedGoogle Scholar
  2. 2.
    Pelosi E, Messa C, Sironi S et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31:932–939CrossRefPubMedGoogle Scholar
  3. 3.
    Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507CrossRefPubMedGoogle Scholar
  4. 4.
    Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of 18F-FDG-PET and PET-CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803PubMedGoogle Scholar
  5. 5.
    Wechalekar K, Sharma B, Cook G (2005) PET/CT in oncology-a major advance. Clin Radiol 60:1143–1155CrossRefPubMedGoogle Scholar
  6. 6.
    Zaidi H, Prasad R (2009) Advances in multimodality molecular imaging. J Med Phys 34:122–128CrossRefPubMedGoogle Scholar
  7. 7.
    Lauenstein TC et al (2002) Wholebody MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12(8):2091–2099PubMedGoogle Scholar
  8. 8.
    Schlemmer HP, Schäfer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body MRI tumor staging with the use of parallel imaging versus dual modality PET-CT: experience on a 32-channel system. Invest Radiol 40:743–753CrossRefPubMedGoogle Scholar
  10. 10.
    Schmidt GP, Wintersperger B, Graser A et al (2007) High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol 449–459Google Scholar
  11. 11.
    Kruger DG, Riederer SJ, Grimm RC, Rossman PJ (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47:224–231CrossRefPubMedGoogle Scholar
  12. 12.
    Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206CrossRefPubMedGoogle Scholar
  13. 13.
    Brennan DD, Gleeson T, Coate LE et al (2005) A comparison of whole-body MRI and CT for the staging of lymphoma. AJR 185:711–716CrossRefPubMedGoogle Scholar
  14. 14.
    Takahara T, Imay Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMedGoogle Scholar
  15. 15.
    Ichikawa T, Erturk S, Motosuqi U et al (2005) Virtual PET-MRI as a novel oncologic imaging of the body: principles, techniques and clinical applications. RSNA 2005: Abstract 1330BP-e, page 776Google Scholar
  16. 16.
    Rao SX, Zeng MS, Chen CZ et al (2008) The value of diffusion-weighted imaging in combination with T2-weighted imaging for rectal cancer detection. Eur J Radiol 65:299–303CrossRefPubMedGoogle Scholar
  17. 17.
    Steinborn M, Tiling R, Heuck A et al (2000) Diagnostik der Metastasierung im Knochenmark mittels MRT. Radiologe 40:826–834CrossRefPubMedGoogle Scholar
  18. 18.
    Semelka RC, Worawattanakul S, Kelekis NL et al (1997) Liver lesion detection, characterization and effect on patient managment: comparison of single-phase spiral CT and current MR techniques. J Magn Reson Imaging 7:1040–1047CrossRefPubMedGoogle Scholar
  19. 19.
    Frericks BB, Meyer BC, Martus P et al (2008) MRI of the thorax during whole-body MRI: evaluation of different MR sequences and comparison to thoracic multidetector computed tomography (MDCT). J Magn Reson Imaging 27:538–545CrossRefPubMedGoogle Scholar
  20. 20.
    Schlemmer HP, Schäfer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71CrossRefPubMedGoogle Scholar
  21. 21.
    Plathow C, Walz M, Lichy MP et al (2008) Kostenüberlegungen zur Ganzkörper-MRT und PET-CT im Rahmen des onkologischen Stagings. Radiologe 48:384–396CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidt GP, Baur-Melnyk A, Haug A et al (2008) Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol 65:47–58CrossRefPubMedGoogle Scholar
  23. 23.
    Pfannenberg C, Aschoff P, Schanz S et al (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43:557–564CrossRefPubMedGoogle Scholar
  24. 24.
    Bastiannet E, Groen H, Jager PL et al (2004) The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 30:83–101CrossRefGoogle Scholar
  25. 25.
    Franzius C, Schulte M, Hilmann A et al (2001) Clinical value of positron emission tomography (PET) in the diagnosis of bone and soft tissue tumors. 3rd interdisciplinary consensus conference „PET in oncology“: results of the Bone and Soft Tissue Study Group. Chirurg 72:1071–1077CrossRefPubMedGoogle Scholar
  26. 26.
    Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160CrossRefPubMedGoogle Scholar
  27. 27.
    Iagaru A, Quon A, McDougall IR, Gambhir SS (2006) F-18 FDG PET/CT evaluation of osseous and soft tissue sarcomas. Clin Nucl Med 31:754–760CrossRefPubMedGoogle Scholar
  28. 28.
    Strobel K, Exner UE, Stumpe KDM et al (2008) The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imaging, Aug 20, epub ahead of printGoogle Scholar
  29. 29.
    Krishnamurthy GT, Tubis M, Hiss J, Blahd WH (1977) Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA 237:2504–2506CrossRefPubMedGoogle Scholar
  30. 30.
    Steinborn M, Heuck AF, Tiling R et al (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129CrossRefPubMedGoogle Scholar
  31. 31.
    Mentzel HJ, Kentouche K, Sauner D et al (2004) Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14:2297–2302CrossRefPubMedGoogle Scholar
  32. 32.
    Nakanishi K, Kobayashi M, Takahashi S et al (2005) Whole-body MRI for detecting metastatic bone tumor: comparison with bone scintigrams. Magn Reson Med Sci 4:11–17CrossRefPubMedGoogle Scholar
  33. 33.
    Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949CrossRefPubMedGoogle Scholar
  34. 34.
    Ghanem N, Lohrman C, Engelhardt M et al (2006) Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 16:1005–1014CrossRefPubMedGoogle Scholar
  35. 35.
    Kellenberger CJ, Miller SF, Khan M et al (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841CrossRefPubMedGoogle Scholar
  36. 36.
    Bäuerle T, Hillengass J, Fechtner K et al (2009) Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology 252(2):477–485CrossRefPubMedGoogle Scholar
  37. 37.
    Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol 190:1097–1104CrossRefPubMedGoogle Scholar
  38. 38.
    Baur A, Stäbler A, Nagel D et al (2002) Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 95:1334–1345CrossRefPubMedGoogle Scholar
  39. 39.
    Dinter DJ, Neff WK, Klaus J (2009) Comparison of whole-body MR imaging and conventional X-ray examination in patients with multiple myeloma and implications for therapy. Ann Hematol 88:457–464CrossRefPubMedGoogle Scholar
  40. 40.
    Goo HW, Choi SH, Ghim T et al (2005) Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 35:766–773CrossRefPubMedGoogle Scholar
  41. 41.
    Mentzel HJ, Kentouche K, Sauner D et al (2004) Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14:2297–2302CrossRefPubMedGoogle Scholar
  42. 42.
    Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol 177:229–236Google Scholar

Copyright information

© Springer Medizin Verlag 2010

Authors and Affiliations

  1. 1.Institut für Klinische RadiologieKlinikum der Ludwig-Maximilians-Universität München, Campus GroßhadernMünchenDeutschland

Personalised recommendations