Der Radiologe

, Volume 50, Issue 4, pp 355–365

Bildgebung atherosklerotischer Gefäßwandveränderungen mit der PET/CT

  • A. Rominger
  • C. Rist
  • K. Nikolaou
  • M.F. Reiser
  • P. Bartenstein
  • M. Hacker
  • T. Saam
Leitthema

Zusammenfassung

Die Atherosklerose ist eine chronische, entzündliche Erkrankung der mittleren und großen Gefäße, deren Folgen die häufigste Todesursache in der westlichen Welt darstellen. In diesem Beitrag werden die Möglichkeiten moderner Bildgebungsmodalitäten vorgestellt, die zur Identifikation entzündlicher, so genannter vulnerabler Plaques unterschiedlich gut geeignet sind. Der Schwerpunkt liegt auf der Hybridbildgebungsmethode PET/CT mit einer Übersicht bisheriger Studien und möglicherweise geeigneter neuer Ansätze molekularer Bildgebungsmodalitäten. Es erfolgt eine Darstellung der semiquantitativen Bildanalyse, die durch einen Vergleich von 21 Patienten, die an 2 unterschiedlichen PET/CT-Scannern über einen mittleren Zeitraum von 6,5 Monaten untersucht wurden, untermauert wird. Hier zeigte sich, dass ein Quotient aus der FDG-Aufnahme in der Gefäßwand und der Blutpoolaktivität unabhängig vom verwendeten Scanner ist (TBR1 1,26 vs. TBR2 1,28; p = nicht signifikant).

Schlüsselwörter

PET/CT Atherosklerose Vulnerabler Plaque Molekulare Bildgebung Entzündung 

Abkürzungsverzeichnis

CT

Computertomographie

CTA

CT-Angiographie

DSA

Digitale Subtraktionsangiographie

FDG

18F-Fluordeoxyglukose

ICC

Intraclass-Korrelationskoeffizient

IVUS

Intravaskulärer Ultraschall

LAD

Ramus interventricularis anterior, „left anterior descending (artery)“

MRT

Magnetresonanztomographie

PET

Positronenemissionstomographie

ROI

Region of interest

SUV

Standardized uptake value

TBR

Target-background-Ratio

PET/CT imaging of atherosclerotic blood vessel alterations

Abstract

Atherosclerosis is a chronic inflammatory disease of middle sized and large vessels with sequelae comprising the most frequent causes of death in the Western world. Modern imaging modalities are being introduced for the study of atherosclerosis with emphasis on the detection of vulnerable plaques. The hybrid imaging method PET/CT presents advantages for the localization of vulnerable plaques based on the uptake of various molecular imaging agents indicative of inflammatory processes. Using semiquantitative image analysis fluorodeoxyglucose (FDG) uptake in large peripheral vessels has been identified in a series of 21 patients, who were scanned first with the previous generation of PET/CT scanner and subsequently with a new generation apparatus, after a mean interval of 6.5 months. The mean ratio of FDG uptake in the walls of eight large vessels to the blood-pool activity (TBR) was nearly identical in the two PET/CT sessions (TBR1 1.26 versus TBR2 1.28; p=n.s.), indicating independence of the TBR endpoint from the particular instrumentation.

Keywords

PET/CT Atherosclerosis Vulnerable plaque Molecular imaging Inflammation 

Literatur

  1. 1.
    Arauz A, Hoyos L, Zenteno M et al (2007) Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 109:409–412CrossRefPubMedGoogle Scholar
  2. 2.
    Ben-Haim S, Kupzov E, Tamir A et al (2004) Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 45:1816–1821PubMedGoogle Scholar
  3. 3.
    Blockmans D, Bley T, Schmidt W (2009) Imaging for large-vessel vasculitis. Curr Opin Rheumatol 21:19–28CrossRefPubMedGoogle Scholar
  4. 4.
    Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP: phosphocholine cytidylyltransferase step. J Biol Chem 270:7757–7764CrossRefPubMedGoogle Scholar
  5. 5.
    Bucerius J, Schmaljohann J, Bohm I et al (2008) Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans – first results. Eur J Nucl Med Mol Imaging 35:815–820CrossRefPubMedGoogle Scholar
  6. 6.
    Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870CrossRefPubMedGoogle Scholar
  7. 7.
    Bural GG, Torigian DA, Chamroonrat W et al (2008) FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 35:562–569CrossRefPubMedGoogle Scholar
  8. 8.
    Cyran C, Saam T, Sourbron S et al (2009) Quantification of arterial wall inflammation in patients with arteriitis using high-resolution DCE-MRI: correlation with 18F-FDG PET/CT. European congress of radiology 2009, March 6th–10th, Vienna, Austria. ECR 19, S1:B-070Google Scholar
  9. 9.
    Davies MJ (1995) Acute coronary thrombosis – the role of plaque disruption and its initiation and prevention. Eur Heart J 16 [suppl L]:3–7Google Scholar
  10. 10.
    Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671PubMedGoogle Scholar
  11. 11.
    Fuster V, Badimon L, Badimon JJ et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326:310–318PubMedCrossRefGoogle Scholar
  12. 12.
    Fuster V, Stein B, Ambrose JA et al (1990) Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 82:II47–II59PubMedGoogle Scholar
  13. 13.
    Gronholdt ML, Nordestgaard BG, Schroeder TV et al (2001) Ultrasonic echolucent carotid plaques predict future strokes. Circulation 104:68–73CrossRefPubMedGoogle Scholar
  14. 14.
    Hansson GK (2005) Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 352:1685–1695CrossRefPubMedGoogle Scholar
  15. 15.
    Iuliano L, Signore A, Vallabajosula S et al (1996) Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis 126:131–141CrossRefPubMedGoogle Scholar
  16. 16.
    Jaffer FA, Kim DE, Quinti L et al (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292–2298CrossRefPubMedGoogle Scholar
  17. 17.
    Kato K, Schober O, Ikeda M et al (2009) Evaluation and comparison of (11)C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging 36:1622–1628CrossRefPubMedGoogle Scholar
  18. 18.
    Kerwin WS, O’brien KD, Ferguson MS et al (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241:459–468CrossRefPubMedGoogle Scholar
  19. 19.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472–1473CrossRefPubMedGoogle Scholar
  20. 20.
    Laitinen I, Saraste A, Weidl E et al (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2:331–338CrossRefPubMedGoogle Scholar
  21. 21.
    Lees AM, Lees RS, Schoen FJ et al (1988) Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 8:461–470PubMedGoogle Scholar
  22. 22.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874CrossRefPubMedGoogle Scholar
  23. 23.
    Little WC, Constantinescu M, Applegate RJ et al (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166PubMedGoogle Scholar
  24. 24.
    Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics – 2009 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation 119:e21–e181CrossRefPubMedGoogle Scholar
  25. 25.
    Matter CM, Wyss MT, Meier P et al (2006) 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 26:584–589CrossRefPubMedGoogle Scholar
  26. 26.
    Menezes LJ, Kotze CW, Hutton BF et al (2009) Vascular inflammation imaging with 18F-FDG PET/CT: when to image? J Nucl Med 50:854–857CrossRefPubMedGoogle Scholar
  27. 27.
    Moriwaki H, Matsumoto M, Handa N et al (1995) Functional and anatomic evaluation of carotid atherothrombosis. A combined study of indium 111 platelet scintigraphy and B-mode ultrasonography. Arterioscler Thromb Vasc Biol 15:2234–2240PubMedGoogle Scholar
  28. 28.
    Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672CrossRefPubMedGoogle Scholar
  29. 29.
    Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117CrossRefPubMedGoogle Scholar
  30. 30.
    Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616PubMedGoogle Scholar
  31. 31.
    Okane K, Ibaraki M, Toyoshima H et al (2006) 18F-FDG accumulation in atherosclerosis: use of CT and MR co-registration of thoracic and carotid arteries. Eur J Nucl Med Mol Imaging 33:589–594CrossRefPubMedGoogle Scholar
  32. 32.
    Paulmier B, Duet M, Khayat R et al (2008) Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 15:209–217CrossRefPubMedGoogle Scholar
  33. 33.
    Rominger A, Saam T, Vogl E et al (2010) In vivo imaging of macrophage activity in the coronary arteries using 68-Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J Nucl Med, in pressGoogle Scholar
  34. 34.
    Rominger A, Saam T, Wolpers S et al (2009) 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 50:1611–1620CrossRefPubMedGoogle Scholar
  35. 35.
    Rudd JH, Myers KS, Bansilal S et al (2008) Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods and recommendations. J Nucl Med 49:871–878CrossRefPubMedGoogle Scholar
  36. 36.
    Rudd JH, Myers KS, Bansilal S et al (2007) (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50:892–896CrossRefPubMedGoogle Scholar
  37. 37.
    Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711CrossRefPubMedGoogle Scholar
  38. 38.
    Saam T, Ferguson MS, Yarnykh VL et al (2005) Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234–239CrossRefPubMedGoogle Scholar
  39. 39.
    Saam T, Hatsukami TS, Takaya N et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77CrossRefPubMedGoogle Scholar
  40. 40.
    Saam T, Rominger A, Wolpers S et al (n d) Association of inflammation of the left coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study. EJNMMI (under review)Google Scholar
  41. 41.
    Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825–1831CrossRefPubMedGoogle Scholar
  42. 42.
    Tahara N, Kai H, Yamagishi S et al (2007) Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 49:1533–1539CrossRefPubMedGoogle Scholar
  43. 43.
    Tatsumi M, Cohade C, Nakamoto Y et al (2003) Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 229:831–837CrossRefPubMedGoogle Scholar
  44. 44.
    Tawakol A, Migrino RQ, Bashian GG et al (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48:1818–1824CrossRefPubMedGoogle Scholar
  45. 45.
    Tawakol A, Migrino RQ, Hoffmann U et al (2005) Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 12:294–301CrossRefPubMedGoogle Scholar
  46. 46.
    Virgolini I, Muller C, Fitscha P et al (1990) Radiolabelling autologous monocytes with 111-indium-oxine for reinjection in patients with atherosclerosis. Prog Clin Biol Res 355:271–280PubMedGoogle Scholar
  47. 47.
    Virgolini I, Rauscha F, Lupattelli G et al (1991) Autologous low-density lipoprotein labelling allows characterization of human atherosclerotic lesions in vivo as to presence of foam cells and endothelial coverage. Eur J Nucl Med 18:948–951PubMedGoogle Scholar
  48. 48.
    Virmani R, Burke AP, Farb A et al (2002) Pathology of the unstable plaque. Prog Cardiovasc Dis 44:349–356CrossRefPubMedGoogle Scholar
  49. 49.
    Williams G, Kolodny GM (2009) Retrospective study of coronary uptake of 18F-fluorodeoxyglucose in association with calcification and coronary artery disease: a preliminary study. Nucl Med Commun 30:287–291CrossRefPubMedGoogle Scholar
  50. 50.
    Wu YW, Kao HL, Chen MF et al (2007) Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 48:227–233PubMedGoogle Scholar
  51. 51.
    Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50:563–568CrossRefPubMedGoogle Scholar
  52. 52.
    Yun M, Jang S, Cucchiara A et al (2002) 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 32:70–76CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2010

Authors and Affiliations

  • A. Rominger
    • 1
  • C. Rist
    • 2
  • K. Nikolaou
    • 2
  • M.F. Reiser
    • 2
  • P. Bartenstein
    • 1
  • M. Hacker
    • 1
  • T. Saam
    • 2
  1. 1.Klinik und Poliklinik für NuklearmedizinKlinikum der Ludwig-Maximilians-Universität München, Campus GroßhadernMünchenDeutschland
  2. 2.Institut für Klinische RadiologieKlinikum der Ludwig-Maximilians-Universität München, Campus GroßhadernMünchenDeutschland

Personalised recommendations