Der Radiologe

, Volume 50, Issue 8, pp 684–691

Einsatz der PET/CT zur Diagnostik und Therapiestratifizierung des Bronchialkarzinoms

Leitthema

Zusammenfassung

Die Einführung der Positronenemissionstomographie (PET) in die klinische Onkologie und die kürzlich eingeführten Hybridsysteme mit der CT haben die Betreuung von Tumorpatienten essenziell verändert. Die Kombination von PET-Scanner und Multidetektor-CT ermöglichte eine Integration von metabolischer Funktion und hochauflösender morphologischer Bildgebung. Die PET/CT ist ein etabliertes Verfahren zur Beurteilung unklarer Tumorläsionen, zum initialen Tumorstaging, zur Tumorregression und Beurteilung des Therapieansprechens. Das wachsende Interesse an der PET/CT zeigt sich in einer zunehmenden Anzahl von Geräteinstallationen sowie wissenschaftlichen Publikationen. Der Trend geht in Richtung einer kombinierten Untersuchungstechnik, bei der die PET/CT-Untersuchung durch eine intravenöse kontrastmittelverstärkte diagnostische CT ergänzt wird.

Die PET/CT hat sich insbesondere bei der Stadieneinteilung von Lungentumorerkrankungen als Referenzmethode etabliert, da sie bei dieser Tumorentität einen diagnostischen Zugewinn für das T-, N- und M-Staging darstellt. Eine zuverlässige, nichtinvasive Stadienklassifizierung erhöht die Rate erfolgreich operierter Patienten und ermöglicht den Verzicht auf eine invasive Zusatzdiagnostik. Die PET/CT erlaubt gleichzeitig eine individuellere Therapiestratifizierung bei inoperablen Lungentumoren, was wiederum eine hohe Kosteneffizienz für das Gesundheitssystem bedeutet.

In diesem Übersichtsartikel soll der Stellenwert der PET/CT beim Bronchialkarzinom zur Diagnostik und Therapieplanung bzw. Verlaufsbeobachtung aufgezeigt werden. Dabei wird hier auf die wesentlichen Elemente der PET/CT eingegangen: Dignitätsbeurteilung von Rundherden, Stadieneinteilung, Rezidivdiagnostik, Bestrahlungsplanung und Therapieverlaufsbeobachtung.

Schlüsselwörter

18F-Fluordesoxyglukose-Positronenemissionstomographie (18F-FDG-PET) Positronenemissionstomographie/CT (PET/CT) Bronchialkarzinom Staging 

PET/CT for diagnostics and therapy stratification of lung cancer

Abstract

With the introduction of positron emission tomography (PET) and more recently the hybrid systems PET/CT, the management of cancer patients in the treatment strategy has changed tremendously. The combination of PET with multidetector CT scanning enables the integration of metabolic and high resolution morphological image information. PET/CT is nowadays an established modality for tumor detection, characterization, staging and response monitoring. The increased installation of PET/CT systems worldwide and also the increased scientific publications underline the importance of this imaging modality. PET/CT is particular the imaging modality of choice in lung cancer staging and re-staging (T, N and M staging). The possible increased success of surgery in lung cancer patients and also the expected reduction in additional invasive diagnostics lead to benefits for both the individual patient and the healthcare system.

In this review article PET and PET/CT is presented for diagnostic and therapeutic stratification in lung cancer. The fundamentals of glucose metabolism, staging, tumor recurrence and therapeutic monitoring are presented.

Keywords

Fluorodeoxyglucose (18F) positron emission tomography (18F-FDG-PET) Positron emission tomography CT (PET/CT) Lung cancer Staging 

Literatur

  1. 1.
    Abramyuk A, Tokalov S, Zophel K et al (2009) Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer? Radiother Oncol 3:399–404CrossRefGoogle Scholar
  2. 2.
    Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 1:78–86Google Scholar
  3. 3.
    Buck AK, Herrmann K, Stargardt T et al (2010) Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med 3:401–412CrossRefGoogle Scholar
  4. 4.
    Buck AK, Hetzel M, Schirrmeister H et al (2005) Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 5:525–533CrossRefGoogle Scholar
  5. 5.
    Bury T, Corhay JL, Duysinx B et al (1999) Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 6:1376–1380Google Scholar
  6. 6.
    Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 4:1171–1182CrossRefGoogle Scholar
  7. 7.
    Cherk MH, Foo SS, Poon AM et al (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-Fluoromisonidazole and 18F-FDG PET. J Nucl Med 12:1921–1926Google Scholar
  8. 8.
    Christensen JA, Nathan MA, Mullan BP et al (2006) Characterization of the solitary pulmonary nodule: 18F-FDG PET versus nodule-enhancement CT. AJR Am J Roentgenol 5:1361–1367CrossRefGoogle Scholar
  9. 9.
    Dierckx RA, van de Wiele C (2008) FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Mol Imaging 8:1544–1549CrossRefGoogle Scholar
  10. 10.
    Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M et al (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using (68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging 7:823–830CrossRefGoogle Scholar
  11. 11.
    Ebenhan T, Honer M, Ametamey SM et al (2009) Comparison of [18F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol Imaging Biol 5:308–321CrossRefGoogle Scholar
  12. 12.
    Erasmus JJ, Patz EF Jr, McAdams HP et al (1997) Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 5:1357–1360Google Scholar
  13. 13.
    Eschmann SM, Friedel G, Paulsen F et al (2007) 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 4:463–471CrossRefGoogle Scholar
  14. 14.
    Everitt S, Hicks RJ, Ball D et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 4:1098–1104Google Scholar
  15. 15.
    Feng M, Kong TM, Gross M et al (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 4:1228–1234Google Scholar
  16. 16.
    Freudenberg LS, Rosenbaum SJ, Beyer T et al (2007) PET versus PET/CT dual-modality imaging in evaluation of lung cancer. Radiol Clin North Am 4:639–644CrossRefGoogle Scholar
  17. 17.
    Gorenberg M, Bar-Shalom R, Israel O (2008) Patterns of FDG uptake in post-thoracotomy surgical scars in patients with lung cancer. Br J Radiol 970:821–825CrossRefGoogle Scholar
  18. 18.
    Gupta NC, Tamim WI, Graeber GG et al (2001) Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest 2:521–527CrossRefGoogle Scholar
  19. 19.
    Halley A, Hugentobler A, Icard P et al (2005) Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 9:1026–1032CrossRefGoogle Scholar
  20. 20.
    Hicks RJ (2009) Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med 31S–42SGoogle Scholar
  21. 21.
    Jhaveri KS, Wong F, Ghai S, Haider MA (2006) Comparison of CT histogram analysis and chemical shift MRI in the characterization of indeterminate adrenal nodules. AJR Am J Roentgenol 5:1303–1308CrossRefGoogle Scholar
  22. 22.
    Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 5:496–507CrossRefGoogle Scholar
  23. 23.
    Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 5:571–578CrossRefGoogle Scholar
  24. 24.
    Keidar Z, Haim N, Guralnik L et al (2004) PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 10:1640–1646Google Scholar
  25. 25.
    Kruger S, Buck AK, Mottaghy FM et al (2009) Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 11:1807–1812CrossRefGoogle Scholar
  26. 26.
    Krupitskaya Y, Eslamy HK, Nguyen DD et al (2009) Osteoblastic bone flare on F18-FDG PET in non-small cell lung cancer (NSCLC) patients receiving bevacizumab in addition to standard chemotherapy. J Thorac Oncol 3:429–431CrossRefGoogle Scholar
  27. 27.
    Kuehl H, Veit P, Rosenbaum SJ et al (2007) Can PET/CT replace separate diagnostic CT for cancer imaging? Optimizing CT protocols for imaging cancers of the chest and abdomen. J Nucl Med 45S–57SGoogle Scholar
  28. 28.
    Lan XL, Zhang YX, Wu ZJ et al (2008) The value of dual time point (18)F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol 7:756–764CrossRefGoogle Scholar
  29. 29.
    Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 25:2500–2507CrossRefGoogle Scholar
  30. 30.
    Lee DH, Kim SK, Lee HY et al (2009) Early prediction of response to first-line therapy using integrated 18F-FDG PET/CT for patients with advanced/metastatic non-small cell lung cancer. J Thorac Oncol 7:816–821CrossRefGoogle Scholar
  31. 31.
    Lee HY, Lee US, Kim BT et al (2009) Diagnostic efficacy of PET/CT plus brain MR imaging for detection of extrathoracic metastases in patients with lung adenocarcinoma. J Korean Med Sci 6:1132–1138CrossRefGoogle Scholar
  32. 32.
    Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 6:451–461CrossRefGoogle Scholar
  33. 33.
    MacManus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 1:85–94CrossRefGoogle Scholar
  34. 34.
    Matsuo M, Miwa K, Shinoda J et al (2009) Target definition by C11-methionine-PET for the radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 3:714–722Google Scholar
  35. 35.
    Menda Y, Kahn D (2002) Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide. Semin Nucl Med 2:92–96CrossRefGoogle Scholar
  36. 36.
    Metser U, Miller E, Lerman H et al (2006) 18F-FDG PET/CT in the evaluation of adrenal masses. J Nucl Med 1:32–37Google Scholar
  37. 37.
    Naalsund A, Maublant J (2006) The solitary pulmonary nodule–is it malignant or benign? Diagnostic performance of Tc-depreotide SPECT. Respiration 5:634–641CrossRefGoogle Scholar
  38. 38.
    Nahmias C, Hanna WT, Wahl CM et al (2007) Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med 5:744–751CrossRefGoogle Scholar
  39. 39.
    Nestle U, Kremp S, Grosu AL (2006) Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2:209–225CrossRefGoogle Scholar
  40. 40.
    Orlacchio A, Schillaci O, Antonelli L et al (2007) Solitary pulmonary nodules: morphological and metabolic characterisation by FDG-PET-MDCT. Radiol Med 2:157–173CrossRefGoogle Scholar
  41. 41.
    Pauls S, Buck AK, Hohl K et al (2007) Improved non-invasive T-staging in non-small cell lung cancer by integrated 18F-FDG PET/CT. Nuklearmedizin 1:9–14Google Scholar
  42. 42.
    Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 18:5435–5441CrossRefGoogle Scholar
  43. 43.
    Takenaka D, Ohno Y, Koyama H et al (2009) Integrated FDG-PET/CT vs. standard radiological examinations: Comparison of capability for assessment of postoperative recurrence in non-small cell lung cancer patients. Eur J Radiol 74:458–464CrossRefPubMedGoogle Scholar
  44. 44.
    Tian M, Zhang H, Oriuchi N et al (2004) Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 8:1064–1072Google Scholar
  45. 45.
    Von Schulthess GK, Steinert HL, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 2:405–422Google Scholar
  46. 46.
    Weber WA, Petersen V, Schmidt B et al (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 14:2651–2657CrossRefGoogle Scholar
  47. 47.
    Werner MK, Parker JA, Kolodny GM et al (2009) Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. AJR Am J Roentgenol 6:1640–1645CrossRefGoogle Scholar
  48. 48.
    Yamamoto Y, Kameyama R, Murota M et al (2009) Early assessment of therapeutic response using FDG PET in small cell lung cancer. Mol Imaging Biol 6:467–472CrossRefGoogle Scholar
  49. 49.
    Yang W, Fu Z, Yu J et al (2008) Value of PET/CT versus enhanced CT for locoregional lymph nodes in non-small cell lung cancer. Lung Cancer 1:35–43CrossRefGoogle Scholar
  50. 50.
    Yi CA, Shin KM, Lee KS et al (2008) Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology 2:632–642CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Abteilung für NuklearmedizinUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Abteilung für Nuklearmedizin (E060)Deutsches Krebsforschungszentrum (DKFZ) HeidelbergHeidelbergDeutschland

Personalised recommendations