Advertisement

Der Radiologe

, Volume 50, Issue 9, pp 791–798 | Cite as

MR-Spektroskopie bei Demenz

  • T. HauserEmail author
  • L. Gerigk
  • F. Giesel
  • L. Schuster
  • M. Essig
Leitthema

Zusammenfassung

Angesichts einer immer älter werdenden Bevölkerung sind wir mit dem Problem einer zunehmenden Zahl an Demenzerkrankungen konfrontiert. Neben klinischen, neuropsychologischen und laborchemischen Verfahren spielt die MRT zur Frühdiagnostik einer Demenz eine wichtige Rolle. Morphologische Veränderungen wie auch verschiedene funktionelle Verfahren helfen bei der Diagnostik und Differenzialdiagnostik einer Demenz. Insgesamt kann mittels MR-spektroskopischer Parameter die Diagnostik einer Demenz verbessert werden. In diesem Artikel soll auf MR-spektroskopische Veränderungen im Rahmen des physiologischen Alterungsprozesses eingegangen werden. Ferner werden speziell Veränderungen bei leichter kognitiver Beeinträchtigung, einer Vorform der Alzheimer-Demenz, bei Alzheimer-, frontotemporaler, vaskulärer und Lewy-Körper-Demenz erörtert.

Schlüsselworte

MRT Spektroskopie Demenz Altern 

MR spectroscopy in dementia

Abstract

With an increasingly aging population we are faced with the problem of an increasing number of dementia patients. In addition to clinical, neuropsychological and laboratory procedures, MRI plays an important role in the early diagnosis of dementia. In addition to various morphological changes functional changes can also help in the diagnosis and differential diagnosis of dementia. Overall the diagnosis of dementia can be improved by using parameters from MR spectroscopy. This article focuses on MR spectroscopic changes in the physiological aging process as well as on changes in mild cognitive impairment a precursor of Alzheimer’s dementia, in Alzheimer’s dementia, frontotemporal dementia, vascular dementia and Lewy body dementia.

Keywords

MRI Spectroscopy Dementia Aging 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 47:93–100CrossRefPubMedGoogle Scholar
  2. 2.
    Angelie E, Bonmartin A, Boudraa A et al (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22:119–127PubMedGoogle Scholar
  3. 3.
    Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613CrossRefPubMedGoogle Scholar
  4. 4.
    Boumezbeur F, Mason GF, De Graaf RA et al (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221CrossRefPubMedGoogle Scholar
  5. 5.
    Brooks JC, Roberts N, Kemp GJ et al (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605CrossRefPubMedGoogle Scholar
  6. 6.
    Chang L, Ernst T, Poland RE et al (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58:2049–2056CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen RM (2007) The application of positron-emitting molecular imaging tracers in Alzheimer’s disease. Mol Imaging Biol 9:204–216CrossRefPubMedGoogle Scholar
  8. 8.
    Coulthard E, Firbank M, English P et al (2006) Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol 253:861–868CrossRefPubMedGoogle Scholar
  9. 9.
    D’Adamo AF Jr, Gidez LI, Yatsu FM (1968) Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res 5:267–273Google Scholar
  10. 10.
    Downes CP, Macphee CH (1990) myo-inositol metabolites as cellular signals. Eur J Biochem 193:1–18CrossRefPubMedGoogle Scholar
  11. 11.
    Ernst T, Chang L, Melchor R et al (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 203:829–836PubMedGoogle Scholar
  12. 12.
    Fayed N, Davila J, Oliveros A et al (2008) Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol 15:1089–1098CrossRefPubMedGoogle Scholar
  13. 13.
    Fernandez A, Garcia-Segura JM, Ortiz T et al (2005) Proton magnetic resonance spectroscopy and magnetoencephalographic estimation of delta dipole density: a combination of techniques that may contribute to the diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Dis 20(2–3):169–177Google Scholar
  14. 14.
    Garcia Santos JM, Gavrila D, Antunez C et al (2008) Magnetic resonance spectroscopy performance for detection of dementia, Alzheimer’s disease and mild cognitive impairment in a community-based survey. Dement Geriatr Cogn Disord 26:15–25CrossRefGoogle Scholar
  15. 15.
    Griffith HR, Stewart CC, Den Hollander JA (2009) Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment. Int Rev Neurobiol 84:105–131CrossRefPubMedGoogle Scholar
  16. 16.
    Haga KK, Khor YP, Farrall A et al (2009) A systematic review of brain metabolite changes, measured with (1)H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging 30:353–363CrossRefPubMedGoogle Scholar
  17. 17.
    Herminghaus S, Frolich L, Gorriz C et al (2003) Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123:183–190CrossRefPubMedGoogle Scholar
  18. 18.
    Jernigan TL, Salmon DP, Butters N et al (1991) Cerebral structure on MRI, part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29:68–81CrossRefPubMedGoogle Scholar
  19. 19.
    Jessen F, Gur O, Block W et al (2009) A multicenter (1)H-MRS study of the medial temporal lobe in AD and MCI. Neurology 72:1735–1740CrossRefPubMedGoogle Scholar
  20. 20.
    Kabani NJ, Sled JG, Chertkow H (2002) Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage 15:604–610CrossRefPubMedGoogle Scholar
  21. 21.
    Kaiser LG, Schuff N, Cashdollar N et al (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672CrossRefPubMedGoogle Scholar
  22. 22.
    Kantarci K (2007) 1H magnetic resonance spectroscopy in dementia. Br J Radiol 80 Spec No 2:S146–S152CrossRefGoogle Scholar
  23. 23.
    Kantarci K, Jack CR Jr, Xu YC et al (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217PubMedGoogle Scholar
  24. 24.
    Kantarci K, Knopman DS, Dickson DW et al (2008) Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248:210–220CrossRefPubMedGoogle Scholar
  25. 25.
    Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398PubMedGoogle Scholar
  26. 26.
    Kantarci K, Weigand SD, Petersen RC et al (2007) Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 28:1330–1339CrossRefPubMedGoogle Scholar
  27. 27.
    Kantarci K, Xu Y, Shiung MM et al (2002) Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease. Dement Geriatr Cogn Disord 14:198–207CrossRefPubMedGoogle Scholar
  28. 28.
    Lehericy S, Marjanska M, Mesrob L et al (2007) Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol 17:347–362CrossRefPubMedGoogle Scholar
  29. 29.
    Martinez-Bisbal MC, Arana E, Marti-Bonmati L et al (2004) Cognitive impairment: classification by 1H magnetic resonance spectroscopy. Eur J Neurol 11:187–193CrossRefPubMedGoogle Scholar
  30. 30.
    Maudsley AA, Domenig C, Govind V et al (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559CrossRefPubMedGoogle Scholar
  31. 31.
    Mellon EA, Pilkinton DT, Clark CM et al (2009) Sodium MR imaging detection of mild Alzheimer disease: preliminary study. AJNR Am J Neuroradiol 30:978–984CrossRefPubMedGoogle Scholar
  32. 32.
    Metastasio A, Rinaldi P, Tarducci R et al (2006) Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy. Neurobiol Aging 27:926–932CrossRefPubMedGoogle Scholar
  33. 33.
    Miller BL, Chang L, Booth R et al (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935CrossRefPubMedGoogle Scholar
  34. 34.
    Minati L, Grisoli M, Bruzzone MG (2007) MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review. J Geriatr Psychiatry Neurol 20:3–21CrossRefPubMedGoogle Scholar
  35. 35.
    Modrego PJ, Fayed N, Pina MA (2005) Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry 162:667–675CrossRefPubMedGoogle Scholar
  36. 36.
    Pantel J, Kratz B, Essig M et al (2003) Parahippocampal volume deficits in subjects with aging-associated cognitive decline. Am J Psychiatry 160:379–382CrossRefPubMedGoogle Scholar
  37. 37.
    Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992CrossRefPubMedGoogle Scholar
  38. 38.
    Pilatus U, Lais C, Rochmont Adu M et al (2009) Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res 173:1–7CrossRefPubMedGoogle Scholar
  39. 39.
    Ramani A, Jensen JH, Helpern JA (2006) Quantitative MR imaging in Alzheimer disease. Radiology 241:26–44CrossRefPubMedGoogle Scholar
  40. 40.
    Seab JP, Jagust WJ, Wong ST et al (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 8:200–208CrossRefPubMedGoogle Scholar
  41. 41.
    Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72PubMedGoogle Scholar
  42. 42.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45CrossRefPubMedGoogle Scholar
  43. 43.
    Thomann PA, Dos Santos V, Toro P et al (2009) Reduced olfactory bulb and tract volume in early Alzheimer’s disease – a MRI study. Neurobiol Aging 30:838–841CrossRefPubMedGoogle Scholar
  44. 44.
    Thomann PA, Kaiser E, Schonknecht P et al (2009) Association of total tau and phosphorylated tau 181 protein levels in cerebrospinal fluid with cerebral atrophy in mild cognitive impairment and Alzheimer disease. J Psychiatry Neurosci 34:136–142PubMedGoogle Scholar
  45. 45.
    Waldman AD, Rai GS (2003) The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer’s disease and vascular dementia: a proton magnetic resonance spectroscopy study. Neuroradiology 45:507–512CrossRefPubMedGoogle Scholar
  46. 46.
    Watson R, Blamire AM, O’Brien JT (2009) Magnetic resonance imaging in Lewy body dementias. Dement Geriatr Cogn Disord 28:493–506CrossRefPubMedGoogle Scholar
  47. 47.
    Xuan X, Ding M, Gong X (2008) Proton magnetic resonance spectroscopy detects a relative decrease of N-acetylaspartate in the hippocampus of patients with dementia with Lewy bodies. J Neuroimaging 18:137–141CrossRefPubMedGoogle Scholar
  48. 48.
    Yoshiura T, Hiwatashi A, Noguchi T et al (2009) Arterial spin labelling at 3 T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol 19:2819–2825CrossRefGoogle Scholar
  49. 49.
    Zhu X, Schuff N, Kornak J et al (2006) Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 20:77–85CrossRefPubMedGoogle Scholar
  50. 50.
    Ziegler U, Doblhammer G (2009) Prevalence and incidence of dementia in Germany – a study based on data from the public sick funds in 2002. Gesundheitswesen 71:281–290CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. Hauser
    • 1
    Email author
  • L. Gerigk
    • 1
  • F. Giesel
    • 1
  • L. Schuster
    • 1
  • M. Essig
    • 1
  1. 1.Abteilung E010, RadiologieDeutsches Krebsforschungszentrum (DKFZ) Heidelberg HeidelbergDeutschland

Personalised recommendations