Der Radiologe

, Volume 50, Issue 2, pp 110–122 | Cite as

Prächirurgische funktionelle Magnetresonanztomographie

Leitthema

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) ist eine neue, wichtige Modalität der neuroradiologischen Bildgebung bei Patienten mit Hirntumoren. Durch die nichtinvasive Messung, Lokalisation und Lateralisation wichtiger Hirnfunktionen wie Motorik oder Sprache werden die Auswahl einer schonenden Therapie und ein funktionserhaltendes Operieren möglich. Voraussetzungen sind die Verwendung klinisch erprobter Untersuchungsprotokolle und eine technisch-methodische Standardisierung. Sinnvoll sind die Kombination der fMRT mit anderen Modalitäten der modernen MR-Bildgebung, besonders dem „diffusion tensor imaging“ (DTI) zur Darstellung wichtiger Faserverbindungen, und die Implementierung dieser multimodalen MR-Bilddaten in Neuronavigatoren oder Bestrahlungssysteme. Wegen fehlender Empfehlungen und Richtlinien medizinischer Fachgesellschaften und fehlender Zulassung wichtiger Hard- und Softwarekomponenten ist die fMRT in der klinischen Diagnostik noch nicht abschließend etabliert. Die klinische Anwendbarkeit und die Zuverlässigkeit der Methode sind aber durch zahlreiche Studien ausreichend belegt. Dieser Beitrag fasst daher den gegenwärtigen Wissensstand zusammen und gibt praktische Information zur Durchführung der prächirurgischen fMRT.

Schlüsselwörter

Klinische funktionelle Magnetresonanztomographie (fMRT) Hirntumor Motorik Somatosensorik Sprache 

Presurgical functional magnetic resonance imaging

Abstract

Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI.

Keywords

Clinical functional magnetic resonance imaging (fMRI) Brain tumor Motor Somatosensory Speech 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Duffau H (2006) New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity – a review. J Neurooncol 79(1):77–115CrossRefPubMedGoogle Scholar
  2. 2.
    Stippich C (2007) Presurgical functional MRI in patients with brain tumors. In: Stippich C (ed) Clinical functional MRI: presurgical functional neuroimaging. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Krings T, Reinges MH et al (2001) Functional and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95(5):816–824CrossRefPubMedGoogle Scholar
  4. 4.
    Detre JA, Leigh JS et al (1992) Perfusion imaging. Magn Reson Med 23(1):37–45CrossRefPubMedGoogle Scholar
  5. 5.
    Weber MA, Zoubaa M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906CrossRefPubMedGoogle Scholar
  6. 6.
    Nimsky C, Ganslandt O et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487CrossRefPubMedGoogle Scholar
  7. 7.
    Naidich TP, Hof PR et al (2001) The motor cortex: anatomic substrates of function. Neuroimaging Clin North Am 11(2):171–193, vii–viiiGoogle Scholar
  8. 8.
    Naidich TP, Hof PR et al (2001) Anatomic substrates of language: emphasizing speech. Neuroimaging Clin North Am 11(2):305–341, ixGoogle Scholar
  9. 9.
    Yousry I, Naidich TP et al (2001) Functional magnetic resonance imaging: factors modulating the cortical activation pattern of the motor system. Neuroimaging Clin North Am 11(2):195–202, viiiGoogle Scholar
  10. 10.
    Thomas B et al (2007) Brain plasticity in fMRI. In: Stippich C (ed) Clinical functional MRI: presurgical functional neuroimaging. Springer, Berlin Heidelberg New York, pp 209–229Google Scholar
  11. 11.
    Yousry TA, Schmid UD et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157CrossRefPubMedGoogle Scholar
  12. 12.
    Fesl G, Moriggl B et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610CrossRefPubMedGoogle Scholar
  13. 13.
    Ojemann G, Ojemann J et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326CrossRefPubMedGoogle Scholar
  14. 14.
    Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(Pt 3):335–359CrossRefPubMedGoogle Scholar
  15. 15.
    Szaflarski JP, Binder JR et al (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59(2):238–244PubMedGoogle Scholar
  16. 16.
    Hernandez AE, Dapretto M et al (2001) Language switching and language representation in Spanish-English bilinguals: an fMRI study. Neuroimage 14(2):510–520CrossRefPubMedGoogle Scholar
  17. 17.
    Schlaggar BL, Brown TT et al (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296(5572):1476–1479CrossRefPubMedGoogle Scholar
  18. 18.
    Shaywitz BA, Shaywitz SE et al (1995) Sex differences in the functional organization of the brain for language. Nature 373(6515):607–609CrossRefPubMedGoogle Scholar
  19. 19.
    Penfield WBE (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRefGoogle Scholar
  20. 20.
    Woolsey CN, Erickson TC et al (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51(4):476–506CrossRefPubMedGoogle Scholar
  21. 21.
    Jack CR Jr, Thompson RM et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190(1):85–92PubMedGoogle Scholar
  22. 22.
    Morris GL 3rd, Mueller WM et al (1994) Functional magnetic resonance imaging in partial epilepsy. Epilepsia 35(6):1194–1198CrossRefPubMedGoogle Scholar
  23. 23.
    Desmond JE, Sum JM et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118( Pt 6):1411–1419CrossRefPubMedGoogle Scholar
  24. 24.
    FitzGerald DB, Cosgrove GR et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18(8):1529–1539PubMedGoogle Scholar
  25. 25.
    Lehericy S, Duffau H et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598CrossRefPubMedGoogle Scholar
  26. 26.
    Binder JR, Rao SM et al (1995) Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52(6):593–601PubMedGoogle Scholar
  27. 27.
    Rutten GJ, Ramsey NF et al (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51(3):350–360CrossRefPubMedGoogle Scholar
  28. 28.
    Detre JA, Maccotta L et al (1998) Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 50(4):926–932PubMedGoogle Scholar
  29. 29.
    Krakow K, Allen PJ et al (2000) Methodology: EEG-correlated fMRI. Adv Neurol 83:187–201PubMedGoogle Scholar
  30. 30.
    Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17:266–282CrossRefGoogle Scholar
  31. 31.
    Pirotte B, Voordecker P et al (2005) Combination of functional magnetic resonance imaging-guided neuronavigation and intraoperative cortical brain mapping improves targeting of motor cortex stimulation in neuropathic pain. Neurosurgery 56 [suppl 2]:344–359; discussion 344–359Google Scholar
  32. 32.
    Ogawa S, Lee TM et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872CrossRefPubMedGoogle Scholar
  33. 33.
    Logothetis NK, Pauls J et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157CrossRefPubMedGoogle Scholar
  34. 34.
    Stippich C, Ochmann H et al (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331(1):50–54CrossRefPubMedGoogle Scholar
  35. 35.
    Stippich C, Hofmann R et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28CrossRefPubMedGoogle Scholar
  36. 36.
    Stippich C, Kapfer D et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285(2):155–159CrossRefPubMedGoogle Scholar
  37. 37.
    Majos A, Tybor K et al (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15(6):1148–1158CrossRefPubMedGoogle Scholar
  38. 38.
    Krings T, Reinges MH et al (2001) Functional MRI for presurgical planning: problems, artefacts and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760CrossRefPubMedGoogle Scholar
  39. 39.
    Hirsch J, Ruge MI et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language and visual functions. Neurosurgery 47(3):711–721; discussion 721–722CrossRefPubMedGoogle Scholar
  40. 40.
    Atlas SW, Howard RS 2nd et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38(2):329–338CrossRefPubMedGoogle Scholar
  41. 41.
    Carpentier AC, Constable RT et al (2001) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94(6):946–954CrossRefPubMedGoogle Scholar
  42. 42.
    Ludemann L, Forschler A et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443CrossRefPubMedGoogle Scholar
  43. 43.
    Holodny AI, Schulder M et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422PubMedGoogle Scholar
  44. 44.
    Kim MJ, Holodny AI et al (2005) The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 26(8):1980–1985PubMedGoogle Scholar
  45. 45.
    Zentner J, Hufnagel A et al (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85(4):542–549CrossRefPubMedGoogle Scholar
  46. 46.
    Baudendistel K, Schad LR et al (1996) Monitoring of task performance during functional magnetic resonance imaging of sensorimotor cortex at 1.5 T. Magn Reson Imaging 14(1):51–58CrossRefPubMedGoogle Scholar
  47. 47.
    Hoeller M, Krings T et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284Google Scholar
  48. 48.
    Kurth R, Villringer K et al (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212CrossRefPubMedGoogle Scholar
  49. 49.
    Stippich C, Romanowski A et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2):90–93CrossRefPubMedGoogle Scholar
  50. 50.
    Stippich C, Romanowski A et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381(3):264–268CrossRefPubMedGoogle Scholar
  51. 51.
    Golaszewski SM, Zschiegner F et al (2002) A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neurosci Lett 324(2):125–128CrossRefPubMedGoogle Scholar
  52. 52.
    Stippich C, Rapps N, Dreyhaupt J et al (2007) Feasibility of routine preoperative functional magnetic resonance imaging for localizing and lateralizing language in 81 consecutive patients with brain tumors. Radiology 243:828–836CrossRefPubMedGoogle Scholar
  53. 53.
    Ramsey NF, Sommer IE et al (2001) Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage 13(4):719–733CrossRefPubMedGoogle Scholar
  54. 54.
    Baxendale S (2002) The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol 24(5):664–676CrossRefPubMedGoogle Scholar
  55. 55.
    Stippich C, Mohammed J et al (2003) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346(1–2):109–113Google Scholar
  56. 56.
    Kober H, Nimsky C et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228CrossRefPubMedGoogle Scholar
  57. 57.
    Hajnal JV, Myers R et al (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31(3):283–291CrossRefPubMedGoogle Scholar
  58. 58.
    Hoeller M, Krings T et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284Google Scholar
  59. 59.
    Krings T, Erberich SG et al (1999) MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol 20(10):1907–1914PubMedGoogle Scholar
  60. 60.
    Krings T, Reinges MH et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760CrossRefPubMedGoogle Scholar
  61. 61.
    Hou BL, Bradbury M et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32(2):489–497CrossRefPubMedGoogle Scholar
  62. 62.
    Weiskopf N, Klose U et al (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24(4):1068–1079CrossRefPubMedGoogle Scholar
  63. 63.
    Wittek A, Kikinis R et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv 8(Pt 2):583–590CrossRefPubMedGoogle Scholar
  64. 64.
    Stippich C (2007) Presurgical functional magnetic resonance imaging. Clin Neuroradiol 17:69–87CrossRefGoogle Scholar
  65. 65.
    Stippich C (2005) Clinical functional magnetic resonance imaging: basic principles and clinical applications. Radiologie up 2 date 5:317–336CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2010

Authors and Affiliations

  1. 1.Abteilung Diagnostische und Interventionelle NeuroradiologieUniversitätsspital BaselBaselSchweiz

Personalised recommendations