Advertisement

Der Radiologe

, Volume 49, Issue 8, pp 712–719 | Cite as

Magnetresonanztomographie der Atembewegung und Lungenfunktion

  • R. TetzlaffEmail author
  • M. Eichinger
Leitthema

Zusammenfassung

Die Lungenfunktion wird bislang hauptsächlich durch die Spirometrie oder Plethysmographie untersucht. Diese Methoden sind zwar sehr leistungsfähig zur Diagnostik von Lungenerkrankungen, sind jedoch globale Messmethoden, deren Messparameter immer die Summe aller funktionellen Einheiten der Lunge beschreiben. Veränderungen, die auf eine Teilkomponente der Atempumpe beschränkt sind oder kleine Teile des Lungengewebes betreffen, können durch gesunde Lungenanteile kompensiert werden. Mit dynamischen bildgebenden Verfahren könnten solche regionalen Veränderungen erfasst und so eine frühere Therapie ermöglicht werden. Die Magnetresonanztomographie (MRT) bietet sich hier ideal an, da sie als Schnittbildverfahren weder die Probleme der Bildverzerrung, der Projektionsverfahren noch die Strahlenbelastung der Computertomographie hat. Allerdings wird die MRT der Lunge durch das geringe Signal des Lungengewebes erschwert. Deshalb befassten sich die ersten Versuche der MRT der Lungenfunktion mit der Bewegung der Thoraxwand und des Zwerchfells. Erst die technischen Entwicklungen der letzten Jahre lassen einen Einsatz der MRT zur Beurteilung der regionalen Parenchymbewegung möglich erscheinen.

Schlüsselwörter

Dynamische MRT Atemdynamik Spirometrie Lungenfunktion Lungen-MRT 

Magnetic resonance imaging of respiratory movement and lung function

Abstract

Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs.

Keywords

Functional magnetic resonance imaging Respiration Pulmonary ventilation Pulmonary function tests MRI of the lungs 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Aliverti A, Ghidoli G, Dellaca RL et al (2003) Chest wall kinematic determinants of diaphragm length by optoelectronic plethysmography and ultrasonography. J Appl Physiol 94(2):621–630PubMedCrossRefGoogle Scholar
  2. 2.
    Barnhard HJ, Pierce JA, Joyce JW, Bates JH (1960) Roentgenographic determination of total lung capacity. A new method evaluated in health, emphysema and congestive heart failure. Am J Med 28:51–60PubMedCrossRefGoogle Scholar
  3. 3.
    Black LF, Hyatt RE (1969) Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis 99(5):696–702PubMedGoogle Scholar
  4. 4.
    Blair E, Hickam JB (1955) The effect of change in body position on lung volume and intrapulmonary gas mixing in normal subjects. J Clin Invest 34(3):383–389PubMedCrossRefGoogle Scholar
  5. 5.
    Carnevali P, Ferrigno G, Aliverti A, Pedotti A (1996) A new method for 3D optical analysis of chest wall motion. Technol Health Care 4(1):43–65PubMedGoogle Scholar
  6. 6.
    Cassart M, Hamacher J, Verbandt Y et al (2001) Effects of lung volume reduction surgery for emphysema on diaphragm dimensions and configuration. Am J Respir Crit Care Med 163(5):1171–1175PubMedGoogle Scholar
  7. 7.
    Chapman B, O’Callaghan C, Coxon R et al (1990) Estimation of lung volume in infants by echo planar imaging and total body plethysmography. Arch Dis Child 65(2):168–170PubMedCrossRefGoogle Scholar
  8. 8.
    Chen Q, Mai VM, Bankier AA et al (2001) Ultrafast MR grid-tagging sequence for assessment of local mechanical properties of the lungs. Magn Reson Med 45(1):24–28PubMedCrossRefGoogle Scholar
  9. 9.
    Clausen J (1997) Measurement of absolute lung volumes by imaging techniques. Eur Respir J 10(10):2427–2431PubMedCrossRefGoogle Scholar
  10. 10.
    Cluzel P, Similowski T, Chartrand-Lefebvre C et al (2000) Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. Radiology 215(2):574–583PubMedGoogle Scholar
  11. 11.
    Cook TS, Tustison N, Biederer J et al (2007) How do registration parameters affect quantitation of lung kinematics? Med Image Comput Assist Interv Int Conf 10(Pt 1):817–824Google Scholar
  12. 12.
    De Jong PA, Nakano Y, Lequin MH et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23(1):93–97CrossRefGoogle Scholar
  13. 13.
    Edelman RR, Hatabu H, Tadamura E et al (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2(11):1236–1239PubMedCrossRefGoogle Scholar
  14. 14.
    Eichinger M, Puderbach M, Smith HJ et al (2007) Magnetic resonance-compatible-spirometry: principle, technical evaluation and application. Eur Respir J 30(5):972–979PubMedCrossRefGoogle Scholar
  15. 15.
    Eichinger M, Tetzlaff R, Puderbach M et al (2007) Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 64(3):329–334PubMedCrossRefGoogle Scholar
  16. 16.
    Gauthier AP, Verbanck S, Estenne M et al (1994) Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. J Appl Physiol 76(2):495–506PubMedGoogle Scholar
  17. 17.
    Gee J, Sundaram T, Hasegawa I et al (2003) Characterization of regional pulmonary mechanics from serial magnetic resonance imaging data. Acad Radiol 10(10):1147–1152PubMedCrossRefGoogle Scholar
  18. 18.
    Gierada DS, Curtin JJ, Erickson SJ et al (1995) Diaphragmatic motion: fast gradient-recalled-echo MR imaging in healthy subjects. Radiology 194(3):879–884PubMedGoogle Scholar
  19. 19.
    Gierada DS, Hakimian S, Slone RM, Yusen RD (1998) MR analysis of lung volume and thoracic dimensions in patients with emphysema before and after lung volume reduction surgery. AJR Am J Roentgenol 170(3):707–714PubMedGoogle Scholar
  20. 20.
    Gierada DS, Slone RM, Fleishman MJ (1998) Imaging evaluation of the diaphragm. Chest Surg Clin North Am 8(2):237–280Google Scholar
  21. 21.
    Haage P, Karaagac S, Adam G et al (2002) Gadolinium containing contrast agents for pulmonary ventilation magnetic resonance imaging: preliminary results. Invest Radiol 37(3):120–125PubMedCrossRefGoogle Scholar
  22. 22.
    Hatabu H, Chen Q, Stock KW et al (1999) Fast magnetic resonance imaging of the lung. Eur J Radiol 29(2):114–132PubMedCrossRefGoogle Scholar
  23. 23.
    Hatabu H, Gaa J, Kim D et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36(4):503–508PubMedCrossRefGoogle Scholar
  24. 24.
    Kauczor HU, Ebert M, Kreitner KF et al (1997) Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging 7(3):538–543PubMedCrossRefGoogle Scholar
  25. 25.
    Kondo T, Kobayashi I, Taguchi Y et al (2005) An analysis of the chest wall motions using the dynamic MRI in healthy elder subjects. Tokai J Exp Clin Med 30(1):15–20PubMedGoogle Scholar
  26. 26.
    Kondo T, Kobayashi I, Taguchi Y et al (2000) A dynamic analysis of chest wall motions with MRI in healthy young subjects. Respirology 5(1):19–25PubMedCrossRefGoogle Scholar
  27. 27.
    Loyd HM, String ST, DuBois AB (1966) Radiographic and plethysmographic determination of total lung capacity. Radiology 86(1):7–14PubMedGoogle Scholar
  28. 28.
    Meysman M, Vincken W (1998) Effect of body posture on spirometric values and upper airway obstruction indices derived from the flow-volume loop in young nonobese subjects. Chest 114(4):1042–1047PubMedCrossRefGoogle Scholar
  29. 29.
    Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338PubMedCrossRefGoogle Scholar
  30. 30.
    Napadow VJ, Mai V, Bankier A et al (2001) Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13(3):467–474PubMedCrossRefGoogle Scholar
  31. 31.
    Paiva M, Verbanck S, Estenne M et al (1992) Mechanical implications of in vivo human diaphragm shape. J Appl Physiol 72(4):1407–1412PubMedGoogle Scholar
  32. 32.
    Plathow C, Fink C, Ley S et al (2004) Measurement of tumor diameter-dependent mobility of lung tumors by dynamic MRI. Radiother Oncol 73(3):349–354PubMedCrossRefGoogle Scholar
  33. 33.
    Plathow C, Ley S, Fink C et al (2004) Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI. Int J Radiat Oncol Biol Phys 59(4):952–959PubMedCrossRefGoogle Scholar
  34. 34.
    Plathow C, Schoebinger M, Fink C et al (2005) Evaluation of lung volumetry using dynamic three-dimensional magnetic resonance imaging. Invest Radiol 40(3):173–179PubMedCrossRefGoogle Scholar
  35. 35.
    Qanadli SD, Orvoen-Frija E, Lacombe P et al (1999) Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging. J Comput Assist Tomogr 23(5):743–748PubMedCrossRefGoogle Scholar
  36. 36.
    Suga K, Tsukuda T, Awaya H et al (1999) Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging 10(4):510–520PubMedCrossRefGoogle Scholar
  37. 37.
    Sundaram TA, Gee JC (2005) Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images. Med Image Anal 9(6):524–537PubMedCrossRefGoogle Scholar
  38. 38.
    Swift AJ, Woodhouse N, Fichele S et al (2007) Rapid lung volumetry using ultrafast dynamic magnetic resonance imaging during forced vital capacity maneuver: correlation with spirometry. Invest Radiol 42(1):37–41PubMedCrossRefGoogle Scholar
  39. 39.
    Takazakura R, Takahashi M, Nitta N, Murata K (2004) Diaphragmatic motion in the sitting and supine positions: healthy subject study using a vertically open magnetic resonance system. J Magn Reson Imaging 19(5):605–609PubMedCrossRefGoogle Scholar
  40. 40.
    Tetzlaff R, Eichinger M, Schobinger M et al (2008) Semiautomatic assessment of respiratory motion in dynamic MRI – comparison with simultaneously acquired spirometry. Rofo 180(11):961–967PubMedGoogle Scholar
  41. 41.
    Troosters T, Grosselink R, Decramer M (2005) Respiratory muscle assessment. Eur Respir Mon 31:57–71Google Scholar
  42. 42.
    Voorhees A, An J, Berger KI et al (2005) Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 54(5):1146–1154PubMedCrossRefGoogle Scholar
  43. 43.
    Wielopolski PA (1999) Magnetic resonance pulmonary angiography. Coron Artery Dis 10(3):157–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Abteilung Radiologie (E010)Deutsches Krebsforschungszentrum (DKFZ)HeidelbergDeutschland
  2. 2.Abteilung medizinische und biologische InformatikDeutsches Krebsforschungszentrum (DKFZ)HeidelbergDeutschland

Personalised recommendations