Der Radiologe

, Volume 46, Issue 10, pp 847–860 | Cite as

Absorptiometrie

Osteoporose

Zusammenfassung

Die vorliegende Übersicht gibt eine Einführung zur Zweispektren-Röntgenabsorptiometrie oder DXA (dual X-ray absorptiometry), der erfolgreichsten und am weitesten verbreiteten Methode in der Osteoporosediagnostik. DXA-Untersuchungen dienen zur Messung der projektiven Knochendichte der Wirbelsäule, des Hüftknochens, des gesamten Skeletts und zur Erfassung morphometrischer Parameter an der Hüfte und Wirbelsäule sowie an der Skelettperipherie am Unterarm, an der Hand und der Ferse. Hauptsächliche klinische Anwendungsbereiche sind Diagnose und Verlaufskontrolle der Osteoporose und ihre Therapie. Aufgrund der hohen Genauigkeit, Präzision und guten Einschätzung des osteoporotischen Frakturrisikos sowie der relativ kostengünstigen Anwendbarkeit hat sich die DXA gegenüber alternativen Methoden weitgehend durchgesetzt. Im Folgenden werden physikalische und technische Grundlagen behandelt sowie die verschiedenen Aufnahmeprotokolle, Qualitätsmerkmale, Fehlerquellen und ihre Bedeutung. Verschiedene Messregionen mit Angaben von Präzision, nominalen Messwerten und Nutzen zur Vorhersage des Frakturrisikos sowie die Ergebnisse großer klinischer Studien werden ebenfalls beschrieben.

Schlüsselwörter

Osteoporose Zweispektrenverfahren Absorptiometrie Knochenmineraldichte Übersicht 

Absorptiometry

Abstract

This article is an introduction to dual X-ray absorptiometry (DXA), the most widely used method today for diagnosis of osteoporosis. DXA can be used to assess projective bone mineral density at the lumbar spine, the proximal hip, and the whole body as well as the skeletal periphery at the forearm, the hand, and the heel. The prominent area of application of DXA is the diagnosis and monitoring of osteoporosis and its treatment. Because of its high accuracy, precision, and ability to predict osteoporotic fracture as well as its relatively low cost, DXA has prevailed over alternative methods. This article discusses the underlying X-ray physics and technological aspects, acquisition protocols, quality characteristics, and sources of error and their relevance. It also describes the various skeletal regions accessible to measurement, details on precision, nominal results, usability to predict fracture risk, and results of influential clinical trials.

Keywords

Osteoporosis Dual X-ray energy applications Absorptiometry Bone mineral density Review 

Literatur

  1. 1.
    Beck TJ, Ruff CB, Warden KE et al. (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25: 6–18PubMedGoogle Scholar
  2. 2.
    Beck TJ, Ruff CB, Bissessur K (1993) Age-related changes in female femoral neck geometry: implications for bone strength. Calc Tiss Internat 53 [Suppl 1]: 41–46Google Scholar
  3. 3.
    Black DM, Cummings SR, Stone K et al. (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6: 883–892PubMedGoogle Scholar
  4. 4.
    Black DM, Cummings SR, Melton LJ 3rd (1992) Appendicular bone mineral and a woman’s lifetime risk of hip fracture. J Bone Miner Res 7: 639–646PubMedGoogle Scholar
  5. 5.
    Blake GM, Parker JC, Buxton FM, Fogelman I (1993) Dual X-ray absorptiometry: a comparison between fan beam and pencil beam scans. Br J Radiol 66: 902–906PubMedGoogle Scholar
  6. 6.
    Blake GM, Jagathesan T, Herd RJ, Fogelman I (1994) Dual X-ray absorptiometry of the lumbar spine: the precision of paired anteroposterior/lateral studies. Br J Radiol 67: 624–630PubMedGoogle Scholar
  7. 7.
    Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice. Dunitz, LondonGoogle Scholar
  8. 8.
    Blake GM, Chinn DJ, Steel SA et al. (2005) A list of device-specific thresholds for the clinical interpretation of peripheral x-ray absorptiometry examinations. Osteoporos Int 16: 2149–2156CrossRefPubMedGoogle Scholar
  9. 9.
    Bonnick SL, Lewis LA (2006) Bone densitometry for technologists. Humana Press, Totawa, NJ, USAGoogle Scholar
  10. 10.
    Boudousq V, Goulart DM, Dinten JM et al. (2005) Image resolution and magnification using a cone beam densitometer: optimizing data acquisition for hip morphometric analysis. Osteoporos Int 16: 813–822CrossRefPubMedGoogle Scholar
  11. 11.
    Cherney DD, Laymon MS, McNitt A, Yuly S (2002) A study on the influence of calcified intervertebral disk and aorta in determining bone mineral density. J Clin Densitom 5: 193–198CrossRefPubMedGoogle Scholar
  12. 12.
    Consensus development conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94: 646–650CrossRefPubMedGoogle Scholar
  13. 13.
    Cummings SR, Black DM, Nevitt MC et al. (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341: 72–75CrossRefPubMedGoogle Scholar
  14. 14.
    Cummings SR, Black DM, Thompson DE et al. (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial [see comments]. Jama 280: 2077–2082CrossRefPubMedGoogle Scholar
  15. 15.
    Diessel E, Fuerst T, Njeh CF et al. (2000) Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices. J Appl Physiol 89: 599–605PubMedGoogle Scholar
  16. 16.
    Engh CA Jr, McAuley JP, Sychterz CJ et al. (2000) The accuracy and reproducibility of radiographic assessment of stress-shielding. A postmortem analysis. J Bone Joint Surg [Am] 82-A: 1414–1420Google Scholar
  17. 17.
    Faulkner KG, Roberts LA, McClung MR (1996) Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 6: 432–436CrossRefPubMedGoogle Scholar
  18. 18.
    Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2: 343–350CrossRefPubMedGoogle Scholar
  19. 19.
    Fink HA, Kuskowski MA, Orwoll ES et al. (2005) Association between Parkinson’s disease and low bone density and falls in older men: the osteoporotic fractures in men study. J Am Geriatr Soc 53: 1559–1564CrossRefPubMedGoogle Scholar
  20. 20.
    Genant HK (1995) Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 10: 997–998PubMedGoogle Scholar
  21. 21.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8: 1137–1148PubMedGoogle Scholar
  22. 22.
    Genant HK, Engelke K, Fuerst T et al. (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11: 707–730PubMedGoogle Scholar
  23. 23.
    Glüer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14: 1952–1962CrossRefPubMedGoogle Scholar
  24. 24.
    Glüer CC, Blake G, Lu Y et al. (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5: 262–270CrossRefPubMedGoogle Scholar
  25. 25.
    Grampp S, Lang P, Jergas M et al. (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10: 1566–1576PubMedGoogle Scholar
  26. 26.
    Gutteridge DH, Stewart GO, Prince RL et al. (2002) A randomized trial of sodium fluoride (60 mg) +/- estrogen in postmenopausal osteoporotic vertebral fractures: increased vertebral fractures and peripheral bone loss with sodium fluoride; concurrent estrogen prevents peripheral loss, but not vertebral fractures. Osteoporos Int 13: 158–170CrossRefPubMedGoogle Scholar
  27. 27.
    Hagiwara S, Engelke K, Yang SO et al. (1994) Dual x-ray absorptiometry forearm software: accuracy and intermachine relationship. J Bone Miner Res 9: 1425–1427PubMedGoogle Scholar
  28. 28.
    Henzell S, Dhaliwal SS, Price RI et al. (2003) Comparison of pencil-beam and fan-beam DXA systems. J Clin Densitom 6: 205–210CrossRefPubMedGoogle Scholar
  29. 29.
    Hui SL, Gao S, Zhou XH et al. (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12: 1463–1470CrossRefPubMedGoogle Scholar
  30. 30.
    Johnell O, Kanis JA, Oden A et al. (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20: 1185–1194CrossRefPubMedGoogle Scholar
  31. 31.
    Kalender WA, Felsenberg D, Genant HK et al. (1995) The European spine phantom – a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20: 83–92CrossRefPubMedGoogle Scholar
  32. 32.
    Kanis JA, Delmas P, Burckhardt P et al. (1997) Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 7: 390–406CrossRefPubMedGoogle Scholar
  33. 33.
    Khan AA, Brown J, Faulkner K et al. (2002) Standards and guidelines for performing central dual X-ray densitometry from the Canadian panel of International Society for Clinical Densitometry. J Clin Densitom 5: 247–257CrossRefPubMedGoogle Scholar
  34. 34.
    Khoo BC, Beck TJ, Qiao QH et al. (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37: 112–121CrossRefPubMedGoogle Scholar
  35. 35.
    Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10: 836–844CrossRefPubMedGoogle Scholar
  36. 36.
    Klotzbuecher CM, Ross PD, Landsman PB et al. (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15: 721–739PubMedGoogle Scholar
  37. 37.
    Kuiper JW, van Kuijk C, Grashuis JL et al. (1996) Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int 6: 25–30CrossRefPubMedGoogle Scholar
  38. 38.
    Laskey MA, Murgatroyd PR, Prentice A (2004) Comparison of narrow-angle fan-beam and pencil-beam densitometers: in vivo and phantom study of the effect of bone density, scan mode, and tissue depth on spine measurements. J Clin Densitom 7: 341–348CrossRefPubMedGoogle Scholar
  39. 39.
    Looker AC, Wahner HW, Dunn WL et al. (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8: 468–489CrossRefPubMedGoogle Scholar
  40. 40.
    Lu Y, Mathur AK, Blunt BA et al. (1996) Dual X-ray absorptiometry quality control: comparison of visual examination and process-control charts. J Bone Miner Res 11: 626–637PubMedGoogle Scholar
  41. 41.
    Lu Y, Fuerst T, Hui S, Genant HK (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int 12: 438–444CrossRefPubMedGoogle Scholar
  42. 42.
    Mack P, O’Brien A, Smith J, Bauman A (1939) A method for estimating the degree of mineralization of bones from tracings of roentgenograms. Science 89: 467Google Scholar
  43. 43.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures [see comments]. BMJ 312: 1254–1259PubMedGoogle Scholar
  44. 44.
    Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 17: 195–201CrossRefPubMedGoogle Scholar
  45. 45.
    Mazess R, Collick B, Trempe J et al. (1989) Performance evaluation of a dual-energy x-ray bone densitometer. Calcif Tissue Int 44: 228–232PubMedGoogle Scholar
  46. 46.
    Mazess RB, Peppler WW, Chesnut CH et al. (1981) Total body bone mineral and lean body mass by dual-photon absorptiometry. II. Comparison with total body calcium by neutron activation analysis. Calcif Tissue Int 33: 361–363CrossRefPubMedGoogle Scholar
  47. 47.
    McCloskey EV, Spector TD, Eyres KS et al. (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3: 138–147CrossRefPubMedGoogle Scholar
  48. 48.
    Miller CG, Herd RJ, Ramalingam T et al. (1993) Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporos Int 3: 31–35CrossRefPubMedGoogle Scholar
  49. 49.
    Miller PD, Bonnick SL, Rosen CJ (1996) Consensus of an international panel on the clinical utility of bone mass measurements in the detection of low bone mass in the adult population. Calcif Tissue Int 58: 207–214CrossRefPubMedGoogle Scholar
  50. 50.
    Mussolino ME, Looker AC, Madans JH et al. (1997) Phalangeal bone density and hip fracture risk. Arch Intern Med 157: 433–438CrossRefPubMedGoogle Scholar
  51. 51.
    Nehme A, Maalouf G, Tricoire JL et al. (2003) Effect of alendronate on periprosthetic bone loss after cemented primary total hip arthroplasty: a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot 89: 593–598PubMedGoogle Scholar
  52. 52.
    Nevitt MC, Ross PD, Palermo L et al. (1999) Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone 25: 613–619CrossRefPubMedGoogle Scholar
  53. 53.
    Orwoll ES, Oviatt SK, Biddle JA (1993) Precision of dual-energy x-ray absorptiometry: development of quality control rules and their application in longitudinal studies. J Bone Miner Res 8: 693–699PubMedGoogle Scholar
  54. 54.
    Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70: 1202–1207PubMedGoogle Scholar
  55. 55.
    Patel R, Blake GM, Batchelor S, Fogelman I (1996) Occupational dose to the radiographer in dual X-ray absorptiometry: a comparison of pencil-beam and fan-beam systems. Br J Radiol 69: 539–543PubMedGoogle Scholar
  56. 56.
    Pearson D, Cawte SA (1997) Long-term quality control of DXA: a comparison of Shewhart rules and Cusum charts. Osteoporos Int 7: 338–343CrossRefPubMedGoogle Scholar
  57. 57.
    Prevrhal S, Lu Y, Genant HK et al. (2005) Towards standardization of dual X-ray absorptiometry (DXA) at the forearm: a common region of interest (ROI) improves the comparability among DXA devices. Calcif Tissue Int 76: 348–354CrossRefPubMedGoogle Scholar
  58. 58.
    Rand T, Schneider B, Grampp S et al. (1997) Influence of osteophytic size on bone mineral density measured by dual X-ray absorptiometry. Acta Radiol 38: 210–213PubMedGoogle Scholar
  59. 59.
    Shepherd JA, Cheng XG, Lu Y et al. (2002) Universal standardization of forearm bone densitometry. J Bone Miner Res 17: 734–745CrossRefPubMedGoogle Scholar
  60. 60.
    Shepherd JA, Prevrhal S, Genant HK (2000) A new method for monitoring osteolysis using dual X-ray absorptiometry difference imaging. Annual Meeting of he Radiological Society of North America (RSNA) November 28th, 2000, Chicago, IL, USAGoogle Scholar
  61. 61.
    Tothill P, Han TS, Avenell A et al. (1996) Comparisons between fat measurements by dual-energy X-ray absorptiometry, underwater weighing and magnetic resonance imaging in healthy women. Eur J Clin Nutr 50: 747–752PubMedGoogle Scholar
  62. 62.
    Trevisan C, Bigoni M, Denti M et al. (1998) Bone assessment after total knee arthroplasty by dual-energy X-ray absorptiometry: analysis protocol and reproducibility. Calcif Tissue Int 62: 359–361CrossRefPubMedGoogle Scholar
  63. 63.
    Venesmaa PK, Kroger HP, Miettinen HJ et al. (2001) Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry – a 3-year follow-up study. J Bone Miner Res 16: 1056–1061CrossRefPubMedGoogle Scholar
  64. 64.
    Wilkie JR, Giger ML, Chinander MR et al. (2004) Comparison of radiographic texture analysis from computed radiography and bone densitometry systems. Med Phys 31: 882–891CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of California San FranciscoSan Francisco, CA 94107

Personalised recommendations