Der Radiologe

, Volume 46, Issue 10, pp 831–838

Pathophysiologie und Pathomorphologie der Osteoporose

  • M. Priemel
  • C. Münch
  • F. T. Beil
  • H. Ritzel
  • M. Amling
Leitthema

Zusammenfassung

Osteoporose ist eine Erkrankung, bei der es durch den Verlust an biomechanischer Stabilität des Knochens zu Frakturen ohne adäquates Trauma kommt. Diese Übersichtsarbeit beleuchtet die grundlegenden pathophysiologischen Mechanismen und pathomorphologischen Besonderheiten der Osteoporose. Letztendlich kann jede Regulationsstörung des Knochenremodelings zur Ausbildung eines Knochenmasseverlustsyndroms führen.

Das Knochenremodeling wird durch verschiedene Mechanismen und Systeme reguliert, dazu gehören auf zellulärer Ebene Osteoblasten, Osteoklasten. aber auch andere Knochenmarkzellen (z. B. Mastzellen, Adipozyten, Stammzellnichen); darüber hinaus wird die Funktion der Knochenzellen durch systemisch wirkende Hormone und neuronale Signale, lokal wirkende Zytokine und Wachstumsfaktoren sowie Transkriptionsfaktoren beeinflusst. Es ist heute möglich, die Osteoporose zu diagnostizieren, das Frakturrisiko zu bestimmen und dieses Risiko durch zugelassene Behandlungsstrategien, insbesondere antiresorptive Therapien, zu reduzieren. Zweifellos werden sich aus einem erweiterten Verständnis der Pathophysiologie und der Pathomorphologie neue und noch effektivere Behandlungsansätze ableiten lassen.

Schlüsselwörter

Osteoporose Remodeling Osteoblast Osteoklast Mikrokallus 

Pathophysiology and pathomorphology of osteoporosis

Abstract

Osteoporosis is a disease that leads to fragility fractures due to loss of bone mass and bone microstructure. This review presents an update on the fundamental pathophysiologic and pathomorphologic mechanisms of bone loss situations. Pathomorphologic characteristics such as perforations and microcallus formations are explained. The physiologic relevance of the remodeling process as well as its control by local-paracrine, systemic-endocrine and central-neural signaling pathways is discussed. Furthermore the role of hormones such as estrogen, FSH and leptin, of transcription-factors such as Runx2 and osterix and as well as that of the wnt signaling pathway for bone cell differentiation and function is presented. On the basis of current knowledge osteoporosis can be diagnosed, treated and fractures can be prevented. However, it is likely that new and even more effective diagnostic and therapeutic strategies will emerge as our understanding of the remodeling process that controls osteoblast and osteoclast function increases.

Keywords

Osteoporosis Remodeling Osteoblast Osteoclast Microcallus 

Literatur

  1. 1.
    Akhter MP, Wells DJ, Short SJ et al. (2004) Bone biomechanical properties in LRP5 mutant mice. Bone 35(1): 162–169CrossRefPubMedGoogle Scholar
  2. 2.
    Albright F, Bloomberg E, Smith PH (1940) Postmenopausal osteoporosis. Trans Assoc Am Physicians 55: 298–305Google Scholar
  3. 3.
    Amling M, Grote HJ, Vogel M et al. (1994) Three-dimensional analysis of the spine in autopsy cases with renal osteodystrophy. Kidney Int 46: 733–743PubMedGoogle Scholar
  4. 4.
    Bekker PJ, Holloway DL, Rasmussen AS et al. (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19: 1059–1066CrossRefPubMedGoogle Scholar
  5. 5.
    Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC et al. (2004) Effect of vitamin D on falls: a meta-analysis. JAMA 291: 1999–2006CrossRefPubMedGoogle Scholar
  6. 6.
    Bollerslev J, Wilson SG, Dick IM et al. (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36: 599–606CrossRefPubMedGoogle Scholar
  7. 7.
    Boyden LM, Mao J, Belsky J et al. (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346: 1513–1521CrossRefPubMedGoogle Scholar
  8. 8.
    Bucay N, Sarosi I, Dunstan CR et al. (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12: 1260–1268PubMedGoogle Scholar
  9. 9.
    Burr DB, Martin RB (1993) Calculating the probability that microcracks initiate resorption spaces. J Biomech 26: 613–616CrossRefPubMedGoogle Scholar
  10. 10.
    Cooper A, Cooper BB (1822) A treatise on dislocations and on fractures of the joints. Churchill, London, pp 425Google Scholar
  11. 11.
    Delling G, Amling M (1995) Biomechanical stability of the skeleton – it is not only bone mass, but also bone structure that counts. Nephrol Dial Transplant 10: 601–606PubMedGoogle Scholar
  12. 12.
    Ducy P, Zhang R, Geoffroy V et al. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747–754CrossRefPubMedGoogle Scholar
  13. 13.
    Ducy P, Amling M, Takeda S et al. (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100: 197–207CrossRefPubMedGoogle Scholar
  14. 14.
    Ebeling PR, Atley LM, Guthrie JR et al. (1996) Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab 81: 3366–3371CrossRefPubMedGoogle Scholar
  15. 15.
    Eghbali-Fatourechi G, Khosla S, Sanyal A et al. (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111: 1221–1230CrossRefPubMedGoogle Scholar
  16. 16.
    Elefteriou F, Ahn JD, Takeda S et al. (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434: 514–520CrossRefPubMedGoogle Scholar
  17. 17.
    Fu L, Patel MS, Bradley A et al. (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122(5): 803–815CrossRefPubMedGoogle Scholar
  18. 18.
    Gong Y, Slee RB, Fukai N et al. (2001) Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–523CrossRefPubMedGoogle Scholar
  19. 19.
    Grant AM, Avenell A, Campbell MK et al. (2005) RECORD Trial Group. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomized Evaluation of Calcium Or vitamin D, RECORD): a randomized placebo-controlled trial. Lancet 365: 1621–1628CrossRefPubMedGoogle Scholar
  20. 20.
    Hahn M, Vogel M, Amling M et al. (1995) Microcallus formations of the cancellous bone: a quantitative analysis of the human spine. J Bone Miner Res 10(9): 1410–1416PubMedGoogle Scholar
  21. 21.
    Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423: 349–355CrossRefPubMedGoogle Scholar
  22. 22.
    Hartikka H, Makitie O, Mannikko M et al. (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 20: 783–789CrossRefPubMedGoogle Scholar
  23. 23.
    Karsenty G (1999) The genetic transformation of bone biology. Genes Dev 13: 3037–3051CrossRefPubMedGoogle Scholar
  24. 24.
    Koay MA, Woon PY, Zhang Y et al. (2004) Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 19: 1619–1627CrossRefPubMedGoogle Scholar
  25. 25.
    Kobayashi T, Kronenberg H (2005) Minireview: transcriptional regulation in development of bone. Endocrinology 146(3): 1012–1017CrossRefPubMedGoogle Scholar
  26. 26.
    Lacey DL, Timms E, Tan HL et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176CrossRefPubMedGoogle Scholar
  27. 27.
    Lee K, Jessop H, Suswillo R et al. (2003) Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 424: 389CrossRefGoogle Scholar
  28. 28.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22: 477–501CrossRefPubMedGoogle Scholar
  29. 29.
    Lips P (2004) Which circulating level of 25-hydroxyvitamin D is appropriate? J Steroid Biochem Mol Biol 89–90: 611–614Google Scholar
  30. 30.
    Little RD, Carulli JP, Del Mastro RG et al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70: 11–19CrossRefPubMedGoogle Scholar
  31. 31.
    Morley J, Marsh S, Drakoulakis E et al. (2005) Does traumatic brain injury result in accelerated fracture healing? Injury 36: 363–368CrossRefPubMedGoogle Scholar
  32. 32.
    Nakashima K, Zhou X, Kunkel G et al. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108: 17–29CrossRefPubMedGoogle Scholar
  33. 33.
    Parfitt AM, Villanueva AR, Foldes J, Rao DS (1995) Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 10: 466–473PubMedGoogle Scholar
  34. 34.
    Pasco JA, Henry MJ, Sanders KM et al. (2004) Geelong Osteoporosis Study. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 19: 19–24CrossRefPubMedGoogle Scholar
  35. 35.
    Pogoda P, Egermann M, Schnell J et al. (2006) Leptin inhibits bone formation not only in rodents, but also in sheep. J Bone Min Res, in pressGoogle Scholar
  36. 36.
    Prestwood KM, Pilbeam CC, Burleson JA et al. (1994) The short-term effects of conjugated estrogen on bone turnover in older women. J Clin Endocrinol Metab 79: 366–371CrossRefPubMedGoogle Scholar
  37. 37.
    Prestwood KM, Kenny AM, Unson C, Kulldorff M (2000) The effect of low dose micronized 17ss-estradiol on bone turnover, sex hormone levels, and side effects in older women: a randomized, double blind, placebo-controlled study. J Clin Endocrinol Metab 85: 4462–4469CrossRefPubMedGoogle Scholar
  38. 38.
    Prestwood KM, Kenny AM, Kleppinger A, Kulldorff M (2003) Ultralow-dose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 290: 1042–1048CrossRefPubMedGoogle Scholar
  39. 39.
    Prior JC (1998) Perimenopause: the complex endocrinology of the menopausal transition. Endocr Rev 19: 397–428CrossRefPubMedGoogle Scholar
  40. 40.
    Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest115: 3318–3325Google Scholar
  41. 41.
    Rigaux P, Benabid N, Darriet D et al. (2005) Study of serum factors potentially involved in the pathogenesis of heterotopic bone formation after severe brain injury. Joint Bone Spine 72: 146–149CrossRefPubMedGoogle Scholar
  42. 42.
    Riggs BL, Wahner HW, Seeman E et al. (1982) Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 70: 716–723PubMedGoogle Scholar
  43. 43.
    Robker RL, Richards JS (1998) Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation. Biol Reprod 59: 476–482CrossRefPubMedGoogle Scholar
  44. 44.
    Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption – a hypothesis. Calci Tiss Internat 33: 349–351CrossRefGoogle Scholar
  45. 45.
    Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289: 1508–1514CrossRefPubMedGoogle Scholar
  46. 46.
    Rosen CJ (2005) Clinical practice. Postmeonpausal osteoporosis. N Engl J Med 353: 595–603CrossRefPubMedGoogle Scholar
  47. 47.
    Sambrook PN, Chen JS, March LM et al. (2004) Serum parathyroid hormone predicts time to fall independent of vitamin D status in a frail elderly population. J Clin Endocrinol Metab 89: 1572–1576CrossRefPubMedGoogle Scholar
  48. 48.
    Schwartzman RJ (2000) New treatments for reflex sympathetic dystrophy. N Engl J Med 343: 654–656CrossRefPubMedGoogle Scholar
  49. 49.
    Simonet WS, Lacey DL, Dunstan CR et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319CrossRefPubMedGoogle Scholar
  50. 50.
    Sims NA, Dupont S, Krust A et al. (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30: 18–25CrossRefPubMedGoogle Scholar
  51. 51.
    Stepnick LS (2004) The frequency of bone disease. In: McGowan JA, Raisz LG, Noonan AS, Elderkin AL (eds) Bone health and osteoporosis. A report of the Surgeon General. Office of the Surgeon General, Washington, DC, pp 68–87Google Scholar
  52. 52.
    Suda T, Takahashi N, Udagawa N et al. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345–357CrossRefPubMedGoogle Scholar
  53. 53.
    Sudeck PHM (1900) Über die akute entzündliche Knochenatrophie. Arch Klin Chir 62: 147–154Google Scholar
  54. 54.
    Sun L, Peng Y, Sharrow AC et al. (2006) FSH directly regulates bone mass. Cell 125(2): 247–260CrossRefPubMedGoogle Scholar
  55. 55.
    Takeda S, Elefteriou F, Levasseur R et al. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305–317CrossRefPubMedGoogle Scholar
  56. 56.
    Trentz OA, Handschin AE, Bestmann L et al. (2005) Influence of brain injury on early posttraumatic bone metabolism. Crit Care Med 33(2): 399–406CrossRefPubMedGoogle Scholar
  57. 57.
    Van Wesenbeeck L, Cleiren E, Gram J et al. (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72: 763–771CrossRefPubMedGoogle Scholar
  58. 58.
    Weitzmann MN, Cenci S, Rifas L et al. (2001) T cell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and -independent mechanisms. J Bone Miner Res 16: 328–337CrossRefPubMedGoogle Scholar
  59. 59.
    Windahl SH, Hollberg K, Vidal O et al. (2001) Female estrogen receptor beta-/- mice are partially protected against age-related trabecular bone loss. J Bone Miner Res 16: 1388–1398CrossRefPubMedGoogle Scholar
  60. 60.
    Yasuda H, Shima N, Nakagawa N et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 95: 3597–3602CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • M. Priemel
    • 2
    • 3
  • C. Münch
    • 2
    • 3
  • F. T. Beil
    • 2
    • 3
  • H. Ritzel
    • 1
  • M. Amling
    • 2
    • 3
  1. 1.Medizinische KlinikKlinikum BambergBambergDeutschland
  2. 2.Klinik und Poliklinik für Unfall-, Hand- und WiederherstellungschirurgieUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  3. 3.Zentrum für Biomechanik und SkelettbiologieKlinik für Unfall-, Hand- und Wiederherstellungschirurgie am Universitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations