Advertisement

Der Radiologe

, Volume 46, Issue 4, pp 267–274 | Cite as

Nachweis von pneumonischen Infiltraten mit der MRT

  • R. Eibel
  • P. Herzog
  • O. Dietrich
  • C. Rieger
  • H. Ostermann
  • M. Reiser
  • S. O. Schoenberg
MRT der Lunge

Zusammenfassung

Die MRT des Lungenparenchyms ist wegen des extrem niedrigen Protonengehalts des Lungengewebes und den starken Grenzflächen zwischen Luft und Parenchym prinzipiell sehr problematisch. Allerdings liegt bei pathologischen Lungengewebeveränderungen eine andere Situation vor, da infolge von Ödem, Entzündung bzw. Tumorwachstum der Protonengehalt erhöht und die Grenzflächen reduziert sind. Viele Erkrankungen der Lunge führen dazu, dass der Patient den Atem nicht lange anzuhalten vermag. Daher sind MRT-Pulssequenzen erforderlich, die eine Datenakquisition in wenigen Sekunden gestatten. Aus technischer Sicht werden die vom CT bekannten Submillimeterschichten vielleicht nie realisierbar sein, sodass sicher auch in Zukunft kleine Rundherde mit einem Durchmesser deutlich unterhalb der Schichtdicke nicht mehr zuverlässig erfasst werden können. Auch Verkalkungen sind nicht mit der gleichen Sicherheit wie im CT zu identifizieren. Gleiches gilt für den Nachweis von Luftsicheln und -einschlüssen in Läsionen. Mit Hilfe der parallelen Bildgebung können beide Lungenflügel in 1–2 Atemstillständen mit einer Ortsauflösung von 6 mm in der z-Achse und Submillimeterauflösung in der x- und y-Ebene untersucht werden. Raumzeiten <10 min lassen sich so realisieren. Insbesondere für die Verlaufsbeurteilung von pneumonischen Infiltraten bei immunsupprimierten Patienten kann die MRT geeignet sein und zu einer geringeren Dosisexposition der Patienten beitragen.

Schlüsselwörter

Magnetresonanztomographie (MRT) Computertomographie (CT) Mehrschichttechnik Lunge Infiltrate 

Magnetic resonance imaging in the evaluation of pneumonia

Abstract

Magnetic resonance imaging (MRI) of the lung is challenging because of substantial drawbacks. However, lung pathologies that are associated with increased attenuation values in CT enhance visualization in MRI: proton density is increased and tissue-air interfaces, resulting in susceptibility artifacts, are reduced in pneumonia, pneumonitis, edema, and carcinoma. On the other hand, many lung diseases result in shortness of breath, so that patients cannot hold their breath for long periods. Therefore, fast imaging techniques are required which should also allow for high spatial resolution so that small lesions can be detected. Calcifications and air pockets within lesions are not readily recognized with MRI. Thin section CT is standard for the diagnosis of pneumonia. With parallel imaging techniques, MRI examination of the lungs can be performed with short periods of breath holding, which allow for sub-centimeter resolution in the z-axis. Especially for follow-up examinations in immunocompromised patients and, in some instances, for the staging of malignant diseases (malignant pleural mesothelioma, lung cancer, respectively), MRI is very promising and may contribute to a decrease in the radiation exposure of the patients.

Keywords

Magnetic resonance imaging (MRI) Computed tomography (CT) Multislice Lung Pneumonia 

Notes

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Bankier AA, O’Donnell CR, Mai VM et al. (2004) Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging 20: 961–966CrossRefPubMedGoogle Scholar
  2. 2.
    Bergin CJ, Healy MV, Zincone GE, Castellino RA (1990) MR evaluation of chest wall involvement in malignant lymphoma. J Comput Assist Tomogr 14: 928–932PubMedGoogle Scholar
  3. 3.
    Bergin CJ, Glover GH, Pauly JM (1991) Lung parenchyma: magnetic susceptibility in MR imaging. Radiology 180: 845–848PubMedGoogle Scholar
  4. 4.
    Biederer J, Busse I, Grimm J et al. (2002) Sensitivität der MRT für alveoläre Infiltrate: Experimentelle Untersuchungen. Röfo 174: 1033–1039Google Scholar
  5. 5.
    Brown LR, Aughenbaugh GL (1991) Masses of the anterior mediastinum: CT and MR imaging. AJR Am J Roentgenol 157: 1171–1180PubMedGoogle Scholar
  6. 6.
    Eibel R, Tuengerthal S, Schoenberg SO (2003) The role of new imaging techniques in diagnosis and staging of malignant pleural mesothelioma. Curr Opin Oncol 15: 131–138CrossRefPubMedGoogle Scholar
  7. 7.
    Eibel R, Herzog P, Dietrich O et al. (in press) Detection of pulmonary abnormalities in immunocompromised patients: fast single-shot MRI with parallel imaging in comparison to thin-section helical-CT. Radiology in pressGoogle Scholar
  8. 8.
    Elster AD, Burdette JH (2001) Questions & answers in magnetic resonance imaging, 2nd edn. Mosby, St LouisGoogle Scholar
  9. 9.
    Frahm J, Häenicke W (1999) Rapid scan techniques. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging, 3rd edn. Mosby, St Louis, pp 87–124Google Scholar
  10. 10.
    Glazer GM, Gross BH, Aisen AM, Quint LE, Francis IR, Orringer MB (1985) Imaging of the pulmonary hilum: a prospective comparative study in patients with lung cancer. AJR Am J Roentgenol 145: 245–248PubMedGoogle Scholar
  11. 11.
    Glazer HS, Lee JK, Levitt RG (1985) Radiation fibrosis: differentiation from recurrent tumor by MR imaging. Radiology 156: 721–726PubMedGoogle Scholar
  12. 12.
    Griswold MA, Jakob PM, Heidemann RM et al. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47: 1202–1210CrossRefPubMedGoogle Scholar
  13. 13.
    Haddad JL, Rofsky NM, Ambrosino MM, Naidich DP, Weinreb JC (1995) T2-weighted MR imaging of the chest: comparison of electrocardiograph-triggered conventional and turbo spin-echo and nontriggered turbo spin-echo sequences. J Magn Reson Imaging 5: 325–329PubMedGoogle Scholar
  14. 14.
    Hansell DM, Armstrong P, Lynch DA, Page McAdams H (2005) Imaging of the diseases of the chest. Technical Considerations, 4th edn. Elsevier Mosby, Philadelphia, pp 1–26Google Scholar
  15. 15.
    Hatabu H, Gaa J, Tadamura E et al. (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29: 152–159CrossRefPubMedGoogle Scholar
  16. 16.
    Heelan RT, Demas BE, Caravelli JF et al. (1989) Superior sulcus tumors: CT and MR imaging. Radiology 170: 637–641PubMedGoogle Scholar
  17. 17.
    Heidemann RM, Ozsarlak O, Parizel PM et al. (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13: 2323–2337CrossRefPubMedGoogle Scholar
  18. 18.
    Jung JI, Park SH, Lee JM, Hahn ST, Kim KA (2000) MR characteristics of progressive massive fibrosis. J Thorac Imaging 15: 144–150CrossRefPubMedGoogle Scholar
  19. 19.
    Knuuttila A, Kivisaari L, Kivisaari A et al. (2001) Evaluation of pleural disease using MR and CT. With special reference to malignant pleural mesothelioma. Acta Radiol 42: 502–507PubMedGoogle Scholar
  20. 20.
    Leutner CC, Gieseke J, Lutterbey G et al. (2000) MR imaging of pneumonia in immunocompromised patients: comparison with helical CT. AJR Am J Roentgenol 175: 391–397PubMedGoogle Scholar
  21. 21.
    Lutterbey G, Gieseke J, Sommer T, Keller E, Kuhl C, Schild H (1996) Ein neuer Ansatz in der Magnetresonanztomographie der Lunge mit einer ultrakurzen Turbo-Spin-Echo-Sequenz (UTSE). RöFo 164: 388–393Google Scholar
  22. 22.
    Mark AS, Winkler ML, Peltzer M, Kaufmann L, Higgins CB (1987) Gated acquisition of MR images of the thorax: advantages for the study of the hila and mediastinum. Magn Reson Imaging 5: 57–63CrossRefPubMedGoogle Scholar
  23. 23.
    Mirvis SE, Keramati B, Buckman R, Rodriguez A (1988) MR imaging of traumatic diaphragmatic rupture. J Comput Assist Tomogr 12: 147–149PubMedGoogle Scholar
  24. 24.
    Moody AR, Bolton SC, Horsfield MA (1995) Optimization of a breath-hold magnetic resonance gradient echo technique for the detection of interstitial lung disease. Invest Radiol 30: 730–737PubMedGoogle Scholar
  25. 25.
    Naidich DP, Webb WR, Müller NL et al. (1999) Principles and techniques of thoracic CT and MR. Computed tomography and magnetic resonance of the thorax, 3rd edn. Lippincott-Raven, Philadelphia, pp 14–15Google Scholar
  26. 26.
    Nyman R, Rehn S, Glimelius B, Hagberg H, Hemmingsson A, Jung B (1987) Magnetic resonance imaging for assessment of treatment effects in mediastinal Hodgkin’s disease. Acta Radiol 28: 145–151PubMedGoogle Scholar
  27. 27.
    Padovani B, Mouroux J, Seksik L et al. (1993) Chest wall invasion by bronchogenic carcinoma: evaluation with MR imaging. Radiology 187: 33–38PubMedGoogle Scholar
  28. 28.
    Rupprecht T, Bowing B, Kuth R, Deimling M, Rascher W, Wagner M (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12: 2752–2756PubMedGoogle Scholar
  29. 29.
    Schmidt MA, Yang GZ, Keegan J et al. (1997) Non-breath-hold lung magnetic resonance imaging with real-time navigation. MAGMA 5: 123–128PubMedGoogle Scholar
  30. 30.
    Semelka RC, Cem Balci N, Wilber KP et al. (2000) Breath-hold 3D gradient-echo MR imaging of the lung parenchyma: evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease. J Magn Reson Imaging 11: 195–200CrossRefPubMedGoogle Scholar
  31. 31.
    Webb WR (1989) MR imaging of treated mediastinal Hodgkin disease. Radiology 170: 315–316Google Scholar
  32. 32.
    Webb WR, Gamsu G, Stark DD, Moore EH (1984) Magnetic resonance imaging of the normal and abnormal pulmonary hila. Radiology 152: 89–94PubMedGoogle Scholar
  33. 33.
    Westbrook C (2002) MRI at a glance, 1st edn. Blackwell Science, OxfordGoogle Scholar
  34. 34.
    Yankelevitz DF, Henschke CI, Batata M, Kim YS, Chu F (1994) Lung cancer: evaluation with MR imaging during and after irradiation. J Thorac Imaging 9: 41–46PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • R. Eibel
    • 1
    • 3
  • P. Herzog
    • 1
  • O. Dietrich
    • 1
  • C. Rieger
    • 2
  • H. Ostermann
    • 2
  • M. Reiser
    • 1
  • S. O. Schoenberg
    • 1
  1. 1.Institut für Klinische RadiologieLudwig-Maximilians-Universität München
  2. 2.Abteilung für Hämatologie/Onkologie, Klinikum GroßhadernLudwig-Maximilians-Universität München
  3. 3.Institut für Klinische RadiologieKlinikum Innenstadt, Ludwig-Maximilians-Universität MünchenMünchen

Personalised recommendations