Der Radiologe

, Volume 45, Issue 2, pp 99–112

Methodische Grundlagen der Optimierung funktioneller MR-Experimente

Funktionelle Bildgebung in der Psychiatrie

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) des Zentralnervensystems ist eine der meistgenutzten Methoden zur Lokalisierung neuronaler Aktivität im Gehirn. Obwohl die Sensitivität der fMRT vergleichsweise gering ist, kann durch die Auswahl geeigneter experimenteller Parameter die Empfindlichkeit dieses bildgebenden Verfahrens gesteigert und die Reliabilität der Ergebnisse gewährleistet werden. In diesem Artikel werden deshalb Ansätze für die Optimierung des Paradigmendesigns, der MR-Bildgebung und der Datenauswertung diskutiert. Klinischen Forschern und interessierten Ärzten sollen dadurch Richtgrößen für die Durchführung effektiver fMRT-Experimente vermittelt werden.

Schlüsselwörter

Funktionelle MRT (fMRT) Optimierung des experimentellen Designs BOLD-Empfindlichkeit Artefaktreduktion 

Methodological principles for optimising functional MRI experiments

Abstract

Functional magnetic resonance imaging (fMRI) is one of the most common methods for localising neuronal activity in the brain. Even though the sensitivity of fMRI is comparatively low, the optimisation of certain experimental parameters allows obtaining reliable results. In this article, approaches for optimising the experimental design, imaging parameters and analytic strategies will be discussed. Clinical neuroscientists and interested physicians will receive practical rules of thumb for improving the efficiency of brain imaging experiments.

Keywords

Functional MRI Optimal experimental design BOLD sensitivity Artefact reduction 

Literatur

  1. 1.
    Bandettini PA (2002) Selection of the optimal pulse sequence for fMRI. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI. Oxford University Press, pp 121–143Google Scholar
  2. 2.
    Birn RM, Cox RW, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage 15:252–264CrossRefGoogle Scholar
  3. 3.
    Bock M (2002) Technische Komponenten. In: Reiser M, Semmler W (Hrsg) Magnetresonanztomographie. Springer, Berlin Heidelberg New York, S 82–96Google Scholar
  4. 4.
    Brix G, Kolem H, Nitz WR (2002) Bildkontraste und Bildgebungssequenzen. In: Reiser M, Semmler W (Hrsg) Magnetresonanztomographie. Springer, Berlin Heidelberg New York, S 41–82Google Scholar
  5. 5.
    Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage 6:93–103CrossRefPubMedGoogle Scholar
  6. 6.
    Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 118:115–128CrossRefGoogle Scholar
  7. 7.
    Donaldson DI, Buckner RL (2002) Effective paradigm design. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI. Oxford University Press, pp 177–195Google Scholar
  8. 8.
    Edward V, Windischberger C, Cunnington R, Erdler M, Lanzenberger R, Mayer D, Endl W, Beisteiner R (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Map 11:207–213CrossRefPubMedGoogle Scholar
  9. 9.
    Friston KJ, Frith CD, Turner R, Frackowiak RSJ (1995) Characterizing evoked hemodynamics with fMRI. Neuroimage 2:157–165CrossRefGoogle Scholar
  10. 10.
    Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10:1–5CrossRefPubMedGoogle Scholar
  11. 11.
    Friston KJ, Zarahn E, Josephs O, Henson RNA, Dale AM (1999) Stochastic designs in event-related fMRI. Neuroimage 10:607–619CrossRefGoogle Scholar
  12. 12.
    Glover GH (2002) Hardware for functional MRI. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI. Oxford University PressGoogle Scholar
  13. 13.
    Krüger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 and at 3.0 Tesla: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604Google Scholar
  14. 14.
    Liu TT (2004) Efficiency, power, and entropy in event-related fMRI with multiple trial types—part II: design of experiments. Neuroimage 21:401–413CrossRefGoogle Scholar
  15. 15.
    Liu TT, Frank LR (2004) Efficiency, power, and entropy in event-related fMRI with multiple trial types—part I: theory. Neuroimage 21:387–400CrossRefGoogle Scholar
  16. 16.
    Mechelli A, Price CJ, Henson RNA, Friston KJ (2003) Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage 18:798–805CrossRefGoogle Scholar
  17. 17.
    Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala. Neuroimage 14:253–257CrossRefGoogle Scholar
  18. 18.
    Murphy K, Garavan H (2004) An empirical investigation into the number of subjects required for an event-related fMRI study. Neuroimage 22:879–885CrossRefGoogle Scholar
  19. 19.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:9868–9872Google Scholar
  20. 20.
    Ugurbil K, Hu XP, Chen W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213CrossRefGoogle Scholar
  21. 21.
    Villringer A, Dirnagel U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7:240–276Google Scholar
  22. 22.
    Wagner TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309CrossRefGoogle Scholar
  23. 23.
    Ward HA, Riederer SJ, Grimm RC, Ehmann RL, Felmlee JP, Jack CR Jr (2004) Prospective multiaxial motion correction of fMRI. Magn Reson Med 43:459–469Google Scholar
  24. 24.
    Wüstenberg T, Jordan K, Giesel FL, Villringer A (2003) Physiological and technical limitations of functional magnetic resonance imaging (fMRI)—consequences for clinical use. Radiologe 43:552–557CrossRefGoogle Scholar
  25. 25.
    Zeffiro T (1996) Clinical functional image analysis: artifact detection and reduction. Neuroimage 4:95–100CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • T. Wüstenberg
    • 1
    • 3
  • F. L. Giesel
    • 2
  • H. Strasburger
    • 1
  1. 1.Abteilung für Medizinische PsychologieGeorg-August-Universität Göttingen
  2. 2.Abteilung für radiologische DiagnostikDeutsches Kebsforschungszentrum (DKFZ) Heidelberg
  3. 3.Abteilung für Medizinische PsychologieGeorg-August-UniversitätGöttingen

Personalised recommendations