Advertisement

Der Radiologe

, Volume 44, Issue 12, pp 1160–1169 | Cite as

Moderne Leberbildgebung mit der MRT—aktuelle Trends und Zukunft

  • C. J. Zech
  • S. O. Schoenberg
  • K. A. Herrmann
  • O. Dietrich
  • M. I. Menzel
  • T. Lanz
  • A. Wallnöfer
  • T. Helmberger
  • M. F. Reiser
Leberdiagnostik, Teil 1

Zusammenfassung

Die vorliegende Arbeit gibt einen Überblick und vermittelt Grundlagenwissen über relevante technische Entwicklungen in der Magnetresonanztomographie (MRT) der Leber: 3D-Sequenzen, Atemtriggerung, parallele Bildgebung und 3 Tesla (T). 3D-Sequenzen können als T1w-Sequenzen für die Kontrastmitteldynamik oder als T2w-Sequenzen für die MR-Cholangiographie angewendet werden. Durch die konsequente Weiterentwicklung der Atemtriggerung ist es möglich, auch bei Patienten mit fehlender Atemanhaltefähigkeit eine gute Bildqualität auf T2w-Bildern zu erhalten. Die parallele Bildgebung hat als universelle Technik zur Beschleunigung der Akquisition gerade für die MRT der Leber besondere Bedeutung und es zeigte sich, dass auch in der Leber die verkürzte Akquisitionszeit nicht zulasten der Bildqualität geht. Durch den Einsatz von 3T-Systemen sind viele weitere Fortschritte in der MRT der Leber zu erwarten, es müssen aber auch bisher nichtrelevante Probleme gelöst werden. Insgesamt erlauben die vorgestellten Innovationen alleine und in Kombination miteinander eine schnelle, robuste und hochqualitative MRT-Diagnostik der Leber.

Schlüsselwörter

Leber-MRT Parallele Bildgebung Atemtriggerung 3D-Sequenzen 3 Tesla 

Modern visualization of the liver with MRI—current trends and future perspectives

Abstract

This contribution provides an overview and imparts basic knowledge on pertinent technical developments in magnetic resonance imaging (MRI) of the liver: 3D sequences, respiratory triggering, parallel imaging, and 3 Tesla (3T). 3D sequences can be used as T1-weighted (T1w) sequences for analyzing dynamics of contrast enhancement or as T2w sequences for MR cholangiography. Consistent improvements in respiratory triggering make it possible to obtain good image quality on T2w scans even in patients unable to hold their breath. Parallel imaging as a universal technique to accelerate image acquisition is particularly appropriate for MRI of the liver, and it has been shown that the reduced acquisition time is not achieved at the expense of image quality. Further progress in MRI of the liver can be expected with use of the 3T systems, but hitherto irrelevant problems must still be solved. Overall the innovations presented here, applied alone or in combination, facilitate rapid, robust, and high-quality MRI diagnostic assessment of the liver.

Keywords

Liver MRI Parallel imaging Respiratory triggering 3D sequences 3 Tesla 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Augui J, Vignaux O, Argaud C et al. (2002) Liver: T2-weighted MR imaging with breath-hold fast-recovery optimized fast spin-echo compared with breath-hold half-Fourier and non-breath-hold respiratory-triggered fast spin-echo pulse sequences. Radiology 223:853–859PubMedGoogle Scholar
  2. 2.
    Baudendistel KT, Heverhagen JT, Knopp MV (2004) Clinical MR at 3 tesla: current status. Radiologe 44:11–18CrossRefPubMedGoogle Scholar
  3. 3.
    Choe KA, Smith RC, Wilkens K et al. (1997) Motion artifact in T2-weighted fast spin-echo images of the liver: effect on image contrast and reduction of artifact using respiratory triggering in normal volunteers. J Magn Reson Imaging 7:298–302PubMedGoogle Scholar
  4. 4.
    Dobritz M, Radkow T, Nittka M, Bautz W, Fellner FA (2002) VIBE with parallel acquisition technique—a novel approach to dynamic contrast-enhanced MR imaging of the liver. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:738–741Google Scholar
  5. 5.
    Griswold MA, Jakob PM, Heidemann RM et al. (2002) Generalized auto-calibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  6. 6.
    Heidemann RM, Ozsarlak O, Parizel PM et al. (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337CrossRefPubMedGoogle Scholar
  7. 7.
    Heidemann RM, Griswold MA, Muller M et al. (2004) Feasibilities and limitations of high field parallel MRI. Radiologe 44:49–55CrossRefPubMedGoogle Scholar
  8. 8.
    Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T (1999) Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients. Abdom Imaging 24:456–461CrossRefPubMedGoogle Scholar
  9. 9.
    Katayama M, Masui T, Kobayashi S et al. (2001) Fat-suppressed T2-weighted MRI of the liver: comparison of respiratory-triggered fast spin-echo, breath-hold single-shot fast spin-echo, and breath-hold fast-recovery fast spin-echo sequences. J Magn Reson Imaging 14:439–449CrossRefPubMedGoogle Scholar
  10. 10.
    McKenzie CA, Lim D, Ransil BJ et al. (2004) Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology 230:589–594PubMedGoogle Scholar
  11. 11.
    Lee VS, Lavelle MT, Rofsky NM et al. (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215:365–372Google Scholar
  12. 12.
    Low RN, Alzate GD, Shimakawa A (1997) Motion suppression in MR imaging of the liver: comparison of respiratory-triggered and nontriggered fast spin-echo sequences. AJR 168:225–231PubMedGoogle Scholar
  13. 13.
    Moteki T, Horikoshi H, Oya N, Aoki J, Endo K (2002) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images. J Magn Reson Imaging 15:564–572PubMedGoogle Scholar
  14. 14.
    Nitz WR (2003) Magnetic resonance imaging. Sequence acronyms and other abbreviations in MR imaging. Radiologe 43:745–763PubMedGoogle Scholar
  15. 15.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  16. 16.
    Rofsky NM, Lee VS, Laub G et al. (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884PubMedGoogle Scholar
  17. 17.
    Schaible R, Textor J, Kreft B, Neubrand M, Schild H (2001) Value of selective MIP reconstructions in respiratory triggered 3D TSE MR-cholangiography on a workstation in comparison with MIP standard projections and single-shot MRCP. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:416–423Google Scholar
  18. 18.
    Schmitt F, Grosu D, Mohr C et al. (2004) 3 Tesla MRI: successful results with higher field strengths. Radiologe 44:31–47PubMedGoogle Scholar
  19. 19.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedGoogle Scholar
  20. 20.
    Tang Y, Yamashita Y, Namimoto T et al. (1997) Liver T2-weighted MR imaging: comparison of fast and conventional half-Fourier single-shot turbo spin-echo, breath-hold turbo spin-echo, and respiratory-triggered turbo spin-echo sequences. Radiology 203:766–772PubMedGoogle Scholar
  21. 21.
    Zech CJ, Schoenberg SO, Huppertz A, Herrmann KA, Helmberger TK, Reiser MF (2003) MR Imaging of the liver in early and accumulation phase with different T1-weighted sequences after use of the bolus-injectable SPIO ResovistTM (SHU 555A). Radiology 229 (P):534PubMedGoogle Scholar
  22. 22.
    Zech CJ, Herrmann KA, Huber A, Dietrich O, Stemmer A, Herzog P, Reiser MF, Schoenberg SO (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2004

Authors and Affiliations

  • C. J. Zech
    • 1
    • 4
  • S. O. Schoenberg
    • 1
  • K. A. Herrmann
    • 1
  • O. Dietrich
    • 1
  • M. I. Menzel
    • 2
  • T. Lanz
    • 3
  • A. Wallnöfer
    • 1
  • T. Helmberger
    • 1
  • M. F. Reiser
    • 1
  1. 1.Institut für Klinische RadiologieKlinikum Großhadern der Ludwig-Maximilian-Universität München
  2. 2.Siemens Medical SolutionsErlangen
  3. 3.Rapid—Biomedizinische GeräteRimpar
  4. 4.Institut für Klinische RadiologieKlinikum Großhadern der Ludwig-Maximilians-UniversitätMünchen

Personalised recommendations