Der Radiologe

, Volume 44, Issue 11, pp 1079–1087 | Cite as

Ganzkörper-MRT und PET-CT in der Tumordiagnostik

Zusammenfassung

Das Tumorstadium nach dem TNM-System beeinflusst die Prognose und das therapeutische Vorgehen bei Patienten mit Tumorerkrankungen. Aufgabe der bildgebenden Diagnostik ist es, die genaue Lokalisation und Ausdehnung des Primärtumors darzustellen und Lymphknoten und Fernmetastasen nachzuweisen oder auszuschließen. Dabei sollte der ganze Körper erfasst werden und das diagnostische Vorgehen eine hohe Sensitivität und Spezifität besitzen. Da diese Voraussetzungen bei den bisher gebräuchlichen Verfahren nicht oder nur teilweise erfüllt werden, müssen bislang mehrere unterschiedliche Modalitäten zum Einsatz gelangen. Nicht zuletzt unter dem Gesichtspunkt der Kosten wäre es wünschenswert, diese Kaskade unterschiedlicher Untersuchungsverfahren durch eine „Ganzkörperuntersuchung“ zu ersetzen, vorausgesetzt, dass damit eine gleich hohe Genauigkeit erreicht wird.

Mit der PET-CT und der Ganzkörper-MRT wurden 2 vielversprechende Methoden für das systemische Tumorstaging entwickelt. Erste Erfahrungen sprechen hierbei für die PET-CT als Methode der 1. Wahl. Durch die Einführung neuer hochauflösender Ganzkörperscanner mit paralleler Bildgebungstechnik (iPAT) und freier Tischbewegung gewinnt die MRT in der Tumordiagnostik jedoch zunehmend an Bedeutung.

Schlüsselwörter

TNM-System Ganzkörperuntersuchung Tumorstaging Hochauflösender Ganzkörperscanner 

Whole-body MRI and PET/CT in tumor diagnosis

Abstract

Tumor staging according to the TNM-system influences prognosis and therapeutical options of patients with a malignant disease. It is the challenge of diagnostic imaging to depict the exact localization of the primary tumor and to detect or rule out lymph node involvement or distant metastases. In doing so, the complete body anatomy should be covered with a modality that offers high sensitivity and specificity. As these requirements could not or only partially be achieved by previous ordinary procedures, the use of multiple different modalities became necessary. Last but not least, in consideration of the costs it would be preferable to replace this cascade of different modalities by a “whole body examination”, preconditioned that the same accuracy is achieved.

With PET/CT and whole-body MRI, two newly available promising methods for a systemic tumor staging have been developed. First experiences indicate PET/CT as a method of first choice. With the introduction of new whole-body MRI scanners using parallel imaging technique (iPAT) and free table movement, MRI plays a more and more important role in whole body tumor staging.

Keywords

TNM system Whole-body examination Tumor staging High resolution whole-body MRI 

Literatur

  1. 1.
    Johnson KMR, Leavitt GD, Kayser HWM (1997) Total-body MR imaging in as little as 18 seconds. Radiology 2002:262–267Google Scholar
  2. 2.
    Horvath LJ, Burtness BA, Mc Carthy S, Johnson KM (1999) Total-body echo planar MR imaging in the staging of breast cancer: comparison with conventional methods—early experience. Radiology 211:119–128PubMedGoogle Scholar
  3. 3.
    Ruehm SG, Goyen M, Quick HH, Schleputz M, Bosk S, Barkhausen J, Ladd ME, Debatin JF (2000) Whole body MRA on a rolling table platform (AngioSURF). RöFo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 172:670–674Google Scholar
  4. 4.
    Barkhausen J, Quick HH, Lauenstein T et al. (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continously rolling table platform: feasability study. Radiology 220:252–256PubMedGoogle Scholar
  5. 5.
    Lauenstein T, Goehde S, Herborn C et al. (2002) Three-dimensional volumetric interpolated breathhold MR imaging for whole-body tumor staging in less than 15 minutes. AJR 179:445–449PubMedGoogle Scholar
  6. 6.
    Mehta RC, Marks MP, Hinks RS, Glover GH, Enzmann DR (1995) MR evaluation of vertebral metatases: T1-weighted short inversion time inversion recovery, fast spin echo, and inversion-recovery fast spin-echo sequences. Am J Neuroradiol 16:281–288PubMedGoogle Scholar
  7. 7.
    Hargaden G, O’Connell M, Kavanagh E, Powell T, Ward R, Eustace S (2003) Current concepts in whole-body imaging using turbo short tau inversion recovery MR imaging. AJR 180:247–252PubMedGoogle Scholar
  8. 8.
    Lutterbey G, Leutner C, Gieseke J et al. (1998) Detection of focal lung lesions with magnetic resonance tomography using T2-weighted ultrashort turbo-spin-echo-sequence in comparison with spiral computerized tomography. RöFo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 169:365–369Google Scholar
  9. 9.
    Semelka RC, Martin DR, Balci C, Lance T (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401PubMedGoogle Scholar
  10. 10.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  11. 11.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedGoogle Scholar
  12. 12.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  13. 13.
    Griswold MA, Jakob PM, Chen Q, Goldfarb JW, Manning WJ, Edelmann RR, Sodickson DK (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (Smash). Magn Reson Med 41:1236–1245CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt GP, Baur A (2004) Hochauflösendes Ganzkörper-Tumor-Staging unter Verwendung paralleler Bildgebung im Vergleich zur PET-CT: erste Erfahrungen auf einem 32-Kanal-MRT-System. Radiologe 44:889–898PubMedGoogle Scholar
  15. 15.
    Goyen M, Herborn CU, Kroger K, Lauenstein TC, Debatin JF, Ruehm SG (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three dimensional mr angiography-initial experience. Radiology 227:277–282PubMedGoogle Scholar
  16. 16.
    Goyen M, Goehde SC, Herborn CU, Hunold P, Vogt FM, Gizewski ER et al. (2004) MR-based full body preventative cardiovascular and tumor imaging: technique and preliminary experience. Eur Radiol 14:783–791PubMedGoogle Scholar
  17. 17.
    Kramer H, Schoenberg SO, Nikolaou K, Struwe A, Winnik MD, Reiser MF (2004) Whole-body cardiovascular screening with integrated parallel acquisition techniques (iPAT). Eur J Radiol 14 [suppl 2]:1815Google Scholar
  18. 18.
    O‘ Connell MJ, Powell T, Brennan D, Lynch T, McCarthy C, Eustace S (2002) Whole-body turbo short tau inversion recovery MR imaging using a moving table top. AJR 179:967–971PubMedGoogle Scholar
  19. 19.
    International Union Against Cancer, UICC (2003) TNM supplement: a commentary on uniform use. 3rd edn. Wiley & Sons, New YorkGoogle Scholar
  20. 20.
    Low RN (2001) Magnetic resonance imaging of the abdomen: applications in the oncology patient. Oncology 14:5–14Google Scholar
  21. 21.
    Pelosi E, Messa C, Sironi S, Picchio M, Landoni C, Bettinardi V et al. (2004) Value of integrated PET/CT for lesion localization in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31:932–939PubMedGoogle Scholar
  22. 22.
    Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B et al. (2003) Staging of non-small-cell lung cancer with integrated positron emission tomography and computed tomography. N Engl J Med 19:2500–2507CrossRefGoogle Scholar
  23. 23.
    Freudenberg LS, Antoch G, Schutt P, Beyer T, Jentzen W, Muller SP et al. (2003) FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging 31:325–329CrossRefPubMedGoogle Scholar
  24. 24.
    Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of 18F-FDG- PET and PET-CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803PubMedGoogle Scholar
  25. 25.
    Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives. J Nucl Med 44:1789–1796PubMedGoogle Scholar
  26. 26.
    Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl R (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44:240–243PubMedGoogle Scholar
  27. 27.
    Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129CrossRefPubMedGoogle Scholar
  28. 28.
    Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J et al. (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206CrossRefPubMedGoogle Scholar
  29. 29.
    Brix G, Lechel U, Veit R, Glatting G, Beyer T (2004) Strahlenexposition von Patienten bei Ganzkörper-Untersuchungen mit Kombinierten PET/CT-Tomographen. Fortschr Röntgenstr 176:S41–S401Google Scholar
  30. 30.
    Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJJ, Devillé WLJM (2001) Systematic review of the diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 91:1530–1542CrossRefPubMedGoogle Scholar
  31. 31.
    Pieterman RM, van Putten JWG, Meuzelaar JJ et al. (2000) Preoperative staging of non-small-cell lung cancer with positron emission tomography. N Engl J Med 343:254–61CrossRefPubMedGoogle Scholar
  32. 32.
    Kresnik, Mikosch P, Gallowitsch HJ et al. (2001) Evaluation of head and neck cancer with 18F-FDG-PET: a comparison with conventional methods. Eur J Nucl Med 28:816–821PubMedGoogle Scholar
  33. 33.
    Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging and PET): a metaanalysis. Radiology 224:748–756PubMedGoogle Scholar
  34. 34.
    Moog F, Bangerter M, Diederichs CG et al. (1997) Lymphoma: role of whole body 2-deoxy-2-[F-18]-fluoro-D-glucose (FDG) PET in nodal staging. Radiology 203:739–744Google Scholar
  35. 35.
    Yasuda S, Shotsu A, Ide M et al. (1997) Diffuse F-18 FDG uptake in chronic thyroiditis. Clin Nucl Med 22:341PubMedGoogle Scholar
  36. 36.
    Yasuda S, Shotsu A, Die M et al. (1996) High fluorine-18 deoxyglucose uptake in sarcoidosis. Clin Nucl Med 21:983–984PubMedGoogle Scholar
  37. 37.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al. (2000) A combined PET-CT scanner for clinical oncology. J Nucl Med 34:1190–1197Google Scholar
  38. 38.
    Kletter K, Becherer A (1999) FDG-PET in oncology. Methodological principles and clinical applications. Radiologe 39:600–609PubMedGoogle Scholar
  39. 39.
    Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR (1993) „Anatometabolic“ tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 34:1190–1197PubMedGoogle Scholar
  40. 40.
    Lauenstein T, Freudenberg L, Goehde S, Ruehm G, Goyen M, Bosk S et al. (2002) Whole body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2004

Authors and Affiliations

  • G. P. Schmidt
    • 1
    • 3
  • R. Schmid
    • 2
  • K. Hahn
    • 2
  • M. F. Reiser
    • 1
  1. 1.Institut für Klinische RadiologieKlinikum Großhadern der Ludwig-Maximilians-Universität München
  2. 2.Klinik und Poliklinik für NuklearmedizinKlinikum Großhadern der Ludwig-Maximilians-Universität München
  3. 3.Institut für Klinische RadiologieKlinikum Großhadern der Ludwig-Maximilians-UniversitätMünchen

Personalised recommendations