Advertisement

Der Radiologe

, Volume 44, Issue 9, pp 835–843 | Cite as

Kardiovaskuläre Ganzkörper-MRT mit paralleler Bildgebung

  • H. Kramer
  • S. O. Schoenberg
  • K. Nikolaou
  • A. Huber
  • A. Struwe
  • E. Winnik
  • B. Wintersperger
  • O. Dietrich
  • B. Kiefer
  • M. F. Reiser
Ganzkörper-MRT

Zusammenfassung

Ziel

Entwicklung eines kardiovaskulären Ganzkörpermagnetresonanztomographie-(MRT-)Protokolls mit paralleler Bildgebung (iPAT).

Material und Methoden

Zweiundzwanzig Personen nahmen an der Untersuchung teil. Durch die Anwendung von iPAT konnte eine hochauflösende Echtzeitbildgebung des Herzens durchgeführt werden. Die 3D-Gadolinium-kontrastverstärkte MR-Angiographie (3D-Gd-MRA) konnte mit iPAT in einer Gesamtscanzeit von nur 62 s und einer räumlichen Auflösung von weniger als 1,4×1,0×1,5 mm3 durchgeführt werden. Die Untersuchungszeit für die Lungenbildgebung wurde um den Faktor 2 verkürzt, wobei das Signal-zu-Rausch-Verhältnis erhalten werden konnte. Die Bildqualität wurde von 2 Radiologen geblindet evaluiert.

Ergebnisse

Die mittlere Scanzeit auf dem Standardscanner betrug 104 min und weniger als 80 min auf dem Ganzkörperscanner. 75% aller MRA-Segmente wurden als gut in Bezug auf die Kontrastierung bewertet, 80% hatten keine venösen Überlagerungen. In einem Fall konnte ein distaler Gefäßverschluss der A. tibialis anterior und in 2 Fällen ein Myokardinfarkt detektiert werden.

Schlussfolgerung

Die parallele Bildgebung bietet die Möglichkeit zur schnellen kardiovaskulären Bildgebung. Eine Kombination von morphologischer und funktioneller Bildgebung in weniger als 80 min ist möglich.

Schlüsselwörter

Magnetresonanztomographie Ganzkörperuntersuchung MR-Angiographie Herzbildgebung Vorsorgeuntersuchung 

Cardiovascular whole body MRI with parallel imaging

Abstract

Purpose

To create a whole-body cardiovascular MRI protocol with parallel imaging (iPAT).

Material and methods

Twenty two persons participated in the whole body scan. Due to iPAT high resolution imaging of the heart could be performed. 3D contrast enhanced MR angiography (3D-CE-MRA) took only 62 s to cover the whole body at a spatial resolution of less than 1.4×1.0×1.5mm3. Scan time for HASTE lung imaging could be reduced by the factor of 2 while maintaining the signal to noise ratio (SNR). Image quality was rated by 2 radiologists blinded to each other.

Results

Mean scan time was 104 min on the standard system and less than 80 min on the new system. 75% of all MRA segments were rated good in terms of vessel conspicuity, more than 80% had no venous overlay. One case of distal occlusion of the anterior tibial artery and two cases of myocardial infarction were detected.

Conclusion

Parallel imaging offers the possibility of fast whole body imaging. A combination of morphologic and functional imaging can be performed within less than 80 min.

Keywords

Magnetic resonance imaging Whole body imaging MR angiography Cardiac imaging Sreening 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Barkhausen J, Goyen M, Ruhm SG, Eggebrecht H, Debatin JF, Ladd ME (2002) Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. AJR Am J Roentgenol 178:731–735PubMedGoogle Scholar
  2. 2.
    Biederer J, Busse I, Grimm J et al. (2002) [Sensitivity of MRI in detecting alveolar Infiltrates: experimental studies]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:1033–1039CrossRefPubMedGoogle Scholar
  3. 3.
    Fain SB, King BF, Breen JF, Kruger DG, Riederer SJ (2001) High-spatial-resolution contrast-enhanced MR angiography of the renal arteries: a prospective comparison with digital subtraction angiography. Radiology 218:481–490PubMedGoogle Scholar
  4. 4.
    Goyen M, Quick HH, Debatin JF et al. (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277PubMedGoogle Scholar
  5. 5.
    Goyen M, Herborn CU, Kroger K, Lauenstein TC, Debatin JF, Ruehm SG (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography—initial experience. Radiology 227:277–282PubMedGoogle Scholar
  6. 6.
    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94CrossRefPubMedGoogle Scholar
  7. 7.
    Griswold MA, Jakob PM, Heidemann RM et al. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  8. 8.
    Henschke CI, Yankelevitz DF (2000) Screening for lung cancer. J Thorac Imaging 15:21–27CrossRefPubMedGoogle Scholar
  9. 9.
    Huber A, Hayes C, Wintersperger BJ, Franz W, Schoenberg SO, Reiser MF (2003) Value of phase-sensitive inversion recovery for detection of myocardial infarction. Annual Meeting of the Radiological Society of North America, Chicago. Radiology (P)Google Scholar
  10. 10.
    Huston J 3rd, Fain SB, Wald JT et al. (2001) Carotid artery: elliptic centric contrast-enhanced MR angiography compared with conventional angiography. Radiology 218:138–143PubMedGoogle Scholar
  11. 11.
    Jakob PM, Griswold MA, Edelman RR, Sodickson DK (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous acquisition of spatial harmonics. Magma 7:42–54CrossRefPubMedGoogle Scholar
  12. 12.
    Jakob PM, Griswold MA, Edelman RR, Manning WJ, Sodickson DK (1999) Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson 1:153–157PubMedGoogle Scholar
  13. 13.
    Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383CrossRefPubMedGoogle Scholar
  14. 14.
    Kramer U, Fenchel M, Helber U et al. (2003) [Multislice TrueFISP-MR imaging for identifying stress-induced myocardial functional disturbances in coronary heart disease]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175:1355–1362CrossRefPubMedGoogle Scholar
  15. 15.
    Lutterbey G, Leutner C, Gieseke J et al. (1998) Detection of focal lung lesions with magnetic resonance tomography using T2-weighted ultrashort turbo-spin-echo-sequence in comparison with spiral computerized tomography. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 169:365–369PubMedGoogle Scholar
  16. 16.
    Ruehm SG, Goyen M, Barkhausen J et al. (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357:1086–1091CrossRefPubMedGoogle Scholar
  17. 17.
    Sans S, Kesteloot H, Kromhout D (1997) The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J 18:1231–1248Google Scholar
  18. 18.
    Schoenberg SO, Rieger J, Weber C et al. (2004) High-resolution MR-angiography of the renal arteries using integrated parallel acquisition techniques (iPAT): value of isotropic cross-sectional reformats compared to digital subtraction angiography and intravascular ultrasound. Radiology, in pressGoogle Scholar
  19. 19.
    Schreiber WG, Schmitt M, Kalden P, Mohrs OK, Kreitner KF, Thelen M (2002) Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging 16:641–652CrossRefPubMedGoogle Scholar
  20. 20.
    Tan KT, van Beek EJ, Brown PW, van Delden OM, Tijssen J, Ramsay LE (2002) Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 57:617–624CrossRefPubMedGoogle Scholar
  21. 21.
    Vasbinder GBC, Nelemans PJ, Kessels AG, Kroon AA, de Leeuw PW, van Engelshoven JM (2002) Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 135:401–411Google Scholar
  22. 22.
    Weiger M, Pruessmann KP, Kassner A et al. (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677CrossRefPubMedGoogle Scholar
  23. 23.
    Wintersperger BJ, Nikolaou K, Dietrich O et al. (2003) Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm. Eur Radiol 13:1931–1936CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2004

Authors and Affiliations

  • H. Kramer
    • 1
    • 3
  • S. O. Schoenberg
    • 1
  • K. Nikolaou
    • 1
  • A. Huber
    • 1
  • A. Struwe
    • 1
  • E. Winnik
    • 2
  • B. Wintersperger
    • 1
  • O. Dietrich
    • 1
  • B. Kiefer
    • 1
  • M. F. Reiser
    • 1
  1. 1.Institut für klinische RadiologieKlinikum Großhadern der Ludwig-Maximilians-Universität München
  2. 2.Siemens Medical Solutions, Erlangen
  3. 3.Institut für klinische RadiologieKlinikum Großhadern der Ludwig-Maximilians-UniversitätMünchen

Personalised recommendations