Advertisement

Der Radiologe

, Volume 44, Issue 7, pp 723–734 | Cite as

Präoperative Bildgebung

Grundlage der navigationsgestützten Neurochirurgie
  • D. Winkler
  • G. Strauß
  • S. Hesse
  • A. Goldammer
  • M. Hund-Georgiadis
  • A. Richter
  • O. Sabri
  • T. Kahn
  • J. Meixensberger
Weiterbildung · Zertifizierte Fortbildung

Zusammenfassung

Die bildgestützte Neurochirurgie erfährt mit der Entwicklung von Soft- und Hardware eine sprunghafte Akzeptanz. Zusätzliche Bilddaten dienen der Beurteilung von Charakter und Ausdehnung von pathologischen Prozessen und dem Umgebungsgewebe. In diesem Kontext sind fMRT, SPECT, PET und spezielle Modalitäten der CT- und MRT-Diagnostik zu nennen. Mittels sekundärer Bildbearbeitung können intrazerebrale Läsionen und benachbarte, funktionell eloquente Regionen im parenchymatösen Organ Gehirn prä- und intraoperativ detektiert werden. Die Integration verschiedener Bildinformationen garantiert eine präzise Planung und Realisierung von chirurgischen Manövern. Die Segmentation interessierender Strukturen, von Risikostrukturen und deren Implementation in Systeme der Neuronavigation helfen, eine zusätzliche intraoperative Traumatisierung zu vermeiden, und bieten eine größere Sicherheit und Präzision. Mit diesem Artikel werden der Wert und die Grenzen präoperativer Bilddiagnostik diskutiert.

Schlüsselwörter

Neuronavigation fMRT PET SPECT Brainshift 

Preoperative imaging as the basis for image-guided neurosurgery

Abstract

With the progressive development of soft- and hardware, the acceptance of image-guided neurosurgery has increased dramatically. Additional image data are required to analyze the nature and the dimensions of pathological processes and the surrounding tissue. In this context, fMRI, SPECT, PET, as well as special modalities of CT and MR imaging, are routinely used. Secondary post-processing options are used to detect intracerebral lesions as well as adjacent functional eloquent regions in the parenchymatous organ pre- and intraoperatively. The integration of different image information guarantees the precise planning and realization of surgical maneuvers. The segmentation of interesting structures and risk structures, as well as their implementation in the neuronavigation systems, help to avoid additional intraoperative traumatization and offer a higher level of safety and precision. In this article the value and limitations of presurgical imaging will be discussed.

Keywords

Neuronavigation fMRI PET SPECT Brain shift 

Notes

Interessenkonflikt:

Keine Angaben

Literatur

  1. 1.
    Benabid AL, Lavallee S, Hoffmann D, Cinquin P, Demongeot J, Danel F (1992) Computer-driven robot for stereotactic neurosurgery. In: Kelly PJ, Kall BA (eds) Computers in stereotactic neurosurgery. Blackwell, Boston, pp 330–342Google Scholar
  2. 2.
    Berlemann U, Langlotz F, Langlotz U, Nolte LP (1997) Computer-assisted orthopedic surgery. From pedicle screw insertion to further applications. Orthopäde 26: 463–469Google Scholar
  3. 3.
    Berlemann U, Monin D, Arm E, Nolte LP, Ozdoba C (1997) Planning and insertion of pedicle screws with computer assistance. J Spinal Disord 10: 117–124PubMedGoogle Scholar
  4. 4.
    Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Töpper R (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110: 699–670CrossRefPubMedGoogle Scholar
  5. 5.
    Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter HP (2000) Functional cranial neuronavigation. Direct integration of fMRI and PET data. J Neuroradiolog 27: 157–163Google Scholar
  6. 6.
    Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter HP (2001) Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48: 1178–1182PubMedGoogle Scholar
  7. 7.
    Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdorfer F, Lorenz WJ (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 38: 1614–1623PubMedGoogle Scholar
  8. 8.
    Coenen VA, Krings T, Mayfrank L, Polin RS, Reinges MHT, Thron A, Gilsbach JM (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49: 86–93PubMedGoogle Scholar
  9. 9.
    Del Sole A, Falini A, Ravasi L, Ottobrini L, De Marchis D, Bombardieri E, Lucignani G (2001) Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med 28: 1851–1857CrossRefPubMedGoogle Scholar
  10. 10.
    Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, Courtheoux P, Houtteville JP (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40: 276–287PubMedGoogle Scholar
  11. 11.
    De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr, Hildebrand J, Brotchi J, Goldman S (1996) Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39: 470–476PubMedGoogle Scholar
  12. 12.
    Dierckx RA, Martin JJ, Dobbeleir A, Crols R, Neetens I, De Deyn PP (1994) Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours. Eur J Nucl Med 21: 621–633PubMedGoogle Scholar
  13. 13.
    Fankhauser H, Glauser D, Flury P, Piguet Y, Epitaux M, Favre J, Meuli RA (1994) Robot for CT-guided stereotactic neurosurgery. Stereotact Funct Neurosurg 63: 93–98PubMedGoogle Scholar
  14. 14.
    Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci 83: 1140–1144PubMedGoogle Scholar
  15. 15.
    Frahm J, Merboldt KD, Hänicke W, Kleinschmidt A, Boecker H (1994) Brain or vein — oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7: 45–53PubMedGoogle Scholar
  16. 16.
    Ganslandt O, Steinmeier R, Kober H, Vieth J, Kassubek J, Romstöck J, Strauss C, Fahlbusch R (1997) Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery 41: 621–628PubMedGoogle Scholar
  17. 17.
    Glant MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, Herdon JE 2nd, Meisler WJ, Schold SC Jr (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 29: 347–355PubMedGoogle Scholar
  18. 18.
    Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44: 97–105PubMedGoogle Scholar
  19. 19.
    Haase J (1999) Neuronavigation. Child Nerv Syst 15: 755–757CrossRefGoogle Scholar
  20. 20.
    Hefti JL, Epitaux M, Glauser D, Fankhauser H (1998) Robotic three-dimensional positioning of a stimulation electrode in the brain. Comput Aided Surg 3: 1–11CrossRefPubMedGoogle Scholar
  21. 21.
    Herholz K, Reulen HJ, Stockhausen HM von, Thiel A, Ilmberger J, Kessler J, Eisner W, Yousry TA, Heiss WD (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41: 1253–1262PubMedGoogle Scholar
  22. 22.
    Hund-Georgiadis M, Lex U, Cramon DY (2000) Language dominance assessment by means of fMRI: contributions from task design, performance, and stimulus modality. J Magn Reson Imaging 13: 668–675CrossRefGoogle Scholar
  23. 23.
    Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A (1999) Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 26: 1501–1509CrossRefPubMedGoogle Scholar
  24. 24.
    Jager PL, Vaalburg W, Pruim J, Vries EG de, Langen KJ, Piers DA (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42: 432–445PubMedGoogle Scholar
  25. 25.
    Kamada K, Takeuchi F, Kuriki S, Oshiro O, Houkin K, Abe H (1993) Functional neurosurgical simulation with brain surface magnetic resonance images and magnetencephalography. Neurosurgery 33: 269–273PubMedGoogle Scholar
  26. 26.
    Kelly PJ (1988) Volumetric stereotactic surgical resection of intra-axial brain mass lesions. Mayo Clin Proc 63: 1186–1198PubMedGoogle Scholar
  27. 27.
    Knauth M, Wirtz CR, Tronnier VM, Staubert A, Kunze S, Sartor K (1998) Intraoperative magnetic resonance tomography for control of extent of neurosurgical operations. Radiologe 38: 218–224CrossRefPubMedGoogle Scholar
  28. 28.
    Krombach GA, Spetzger U, Rohde V, Gilsbach JM (1998) Intraoperative localization of functional regions in the sensorimotor cortex by neuronavigation and cortical mapping. Comput Aided Surg 3: 64–73CrossRefPubMedGoogle Scholar
  29. 29.
    Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36: 484–492PubMedGoogle Scholar
  30. 30.
    Kuwert T, Woesler B, Morgenroth C, Lerch H, Schafers M, Palkovic S, Matheja P, Brandau W, Wassmann H, Schober O (1998) Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 39: 23–27PubMedGoogle Scholar
  31. 31.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679PubMedGoogle Scholar
  32. 32.
    Laine T, Schlenzka D, Makitalo K, Tallroth K, Nolte LP, Visarius H (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine 22: 1254–1258CrossRefPubMedGoogle Scholar
  33. 33.
    Lammertsma AA, Wise RJ, Cox TCS, Thomas DGT, Jones T (1985) Measurement of blood flow, oxygen utilization, oxygen extraction ratio and fractional blood volume in human brain tumors and surrounding oedematous tissues. Br J Radiol 58: 725–734PubMedGoogle Scholar
  34. 34.
    Langen KJ, Pauleit D, Coenen HH (2002) 3-[123I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 29: 625–631CrossRefPubMedGoogle Scholar
  35. 35.
    League D (1995) Interactive, image-guided, stereotactic neurosurgery systems. AORN J 61: 360–370PubMedGoogle Scholar
  36. 36.
    Levivier M, Wikler D Jr, Massager N, David P, Devriendt D, Lorenzoni J, Pirotte B, Desmedt F, Simon S Jr, Goldman S, Van Houtte P, Brotchi J (2002) The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review. J Neurosurg [Suppl] 97: 542–550Google Scholar
  37. 37.
    Maciunas RJ, Galloway RL Jr, Latimer JW (1994) The application accuracy of stereotactic frames. Neurosurg 35: 682–695Google Scholar
  38. 38.
    Mehdorn HM, Schrader B, Nabavi A, Hempelmann R (2000) Neuronavigation im Bereich der Schädelbasis. Laryngorhinootologie 79: 404–411CrossRefPubMedGoogle Scholar
  39. 39.
    Meyer PT, Sattler B, Lincke T, Seese A, Sabri O (2003) Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 44: 839–845PubMedGoogle Scholar
  40. 40.
    Meyer PT, Sturz L, Sabri O, Schreckenberger M, Spetzger U, Setani KS, Kaiser HJ, Büll U (2003) Preoperative motor system brain mapping using positron emission tomography and statistical parametric mapping: hints on cortical reorganisation. J Neurol Neurosurg Psychiatry 74: 471–478CrossRefPubMedGoogle Scholar
  41. 41.
    Meyer PT, Sturz L, Schreckenberger M, Spetzger U, Meyer GF, Setani KS, Sabri O, Büll U (2003) Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses. Eur J Nucl Med Mol Imaging DOI 10.1007/s00259–003–1186–1
  42. 42.
    Mies G (1992) Measurement of in vivo glucose transport from blood to tissue of experimentally-induced glioma in rat brain. J Neurooncol 12: 13–23PubMedGoogle Scholar
  43. 43.
    Nabavi A, Manthei G, Blomer U, Kumpf L, Klinge H, Mehdorn HM. (1995) Neuronavigation. Computer-assisted surgery in neurosurgery. Radiologe 35: 573–577PubMedGoogle Scholar
  44. 44.
    Nelson SJ (1999) Imaging of brain tumors after therapy. Neuroimaging Clin North Am 9: 801–819Google Scholar
  45. 45.
    Nimsky C, Ganslandt O, Kober H, Möller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetencephalography in functional neuronavigation. Neurosurgery 44: 1249–1256PubMedGoogle Scholar
  46. 46.
    Nishioka T, Oda Y, SeinoY (1992) Distribution of glucose transporters in human brain tumors. Cancer Res 52: 3972–3979PubMedGoogle Scholar
  47. 47.
    Ostertag CB, Warnke PC (1999) Neuronavigation — Computerassistierte Neurochirurgie. Nervenarzt 70: 517–521CrossRefPubMedGoogle Scholar
  48. 48.
    Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43: 2311–2318PubMedGoogle Scholar
  49. 49.
    Reinhardt H, Trippel M, Westermann B, Gratzl O (1999) Computer aided surgery with special focus on neuronavigation. Comput Med Imaging Graph 23: 237–244CrossRefPubMedGoogle Scholar
  50. 50.
    Rhodes CG, Wise RJ, Gibbs JM, Frackowiak RS, Hatazawa J, Palmer AJ, Thomas DG, Jones T (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14: 614–626PubMedGoogle Scholar
  51. 51.
    Roessler K, Czech T, Dietrich W, Ungersboeck K, Nasel C, Hainfellner JA, Koos WT (1998) Frameless stereotactic-directed tissue sampling during surgery of suspect low-grade gliomas to avoid histological undergrading. Minim Invasive Neurosurg 41: 183–186PubMedGoogle Scholar
  52. 52.
    Schönherr B, Gräwe A, Meier U (1999) Qualitätssichernde Maßnahmen bei neurochirurgischen Operationen. Z Arztl Fortbild Qualitättssich 93: 273–280Google Scholar
  53. 53.
    Schreckenberger M, Spetzger U, Sabri O, Meyer PT, Zeggel T, Zimny M, Gilsbach J, Büll U (2001) Localisation of motor areas in brain tumour patients: a comparison of preoperative [18F]FDG-PET and intraoperative cortical electrostimulation. Eur J Nucl Med 28: 1394–1403CrossRefPubMedGoogle Scholar
  54. 54.
    Sobottka SB, Bredow J, Beuthien-Baumann B, Reiss G, Schackert G, Steinmeier R (2002) Comparison of functional brain PET images and intraoperative brain-mapping data using image-guided surgery. Comput Aided Surg 7: 317–325CrossRefPubMedGoogle Scholar
  55. 55.
    Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D, Dubois F, Brunon J (1998) Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 25: 1649–1657CrossRefPubMedGoogle Scholar
  56. 56.
    Steinmeier R, Sobottka SB, Reiss G, Bredow J, Gerber J, Schackert G (2002) Surgery of low-grade gliomas near speech-eloquent regions: brainmapping versus preoperative functional imaging. Onkologie 25: 552–557CrossRefPubMedGoogle Scholar
  57. 57.
    Suess O, Kombos T, Hoell T, Baur S, Brock M (2000) A new cortical electrode for neuronavigation-guided intraoperative neurophysiological monitoring: technical note. Acta Neurochir 142: 329–332CrossRefGoogle Scholar
  58. 58.
    Sure U, Hellwig D, Bertalanffy (2001) Incorrect vector after calibration of surgical instruments for image guidance. The problem and the solution: technical note. Minim Invasive Neurosurg 44: 88–91CrossRefPubMedGoogle Scholar
  59. 59.
    Wagner W, Gaab MR, Schroeder HW, Piek J, Niendorf WR (2000) Neuronavigation in the central area: impact on different surgical steps related to the location of pathological process. Zentralbl Neurochir 61: 188–193CrossRefPubMedGoogle Scholar
  60. 60.
    Wagner W, Gaab MR, Schroeder HWS, Tschiltschke W (2000) Cranial neuronavigation in neurosurgery: assessment of usefulness in relation to type and site of pathology in 284 patients. Minim Invasive Neurosurg 43: 124–131CrossRefPubMedGoogle Scholar
  61. 61.
    Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stöcklin G, Schwaiger M (2002) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27: 542–549CrossRefGoogle Scholar
  62. 62.
    Winkler D, Vitzthum HE, Seifert V (1999) Spinal marker — a new method to increase accuracy in spinal navigation. Comput Aided Surg 4: 101–104CrossRefPubMedGoogle Scholar
  63. 63.
    Winkler D, Zimmermann M, Goldammer A, Raabe A, Trantakis C, Seifert V (1999) Quantitative analysis of intraoperative brainshift during tumor resection and biopsy in open MRI. In: Lemke HU, Vannier MW, Inamura K, Farman AG (eds) Elsevier CARS’99. Elsevier, Amsterdam New York, pp 706–710Google Scholar
  64. 64.
    Wirtz CR, Tronnier VM, Bonsanto MM, Haßfeld S, Knauth M, Kunze S (1998) Neuronavigation. Nervenarzt 69: 1029–1036CrossRefPubMedGoogle Scholar
  65. 65.
    Yetkin FZ, Mendelsohn D (2002) Hypoxia imaging in brain tumors neuroimaging. Clin North Am 12: 537–552Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • D. Winkler
    • 1
    • 6
  • G. Strauß
    • 2
  • S. Hesse
    • 5
  • A. Goldammer
    • 1
  • M. Hund-Georgiadis
    • 3
  • A. Richter
    • 4
  • O. Sabri
    • 5
  • T. Kahn
    • 4
  • J. Meixensberger
    • 1
  1. 1.Klinik und Poliklinik für NeurochirurgieUniversität Leipzig
  2. 2.Klinik für HNO-KrankheitenUniversität Leipzig
  3. 3.Max-Planck-Institut für Neuropsychologische ForschungLeipzig
  4. 4.Klinik für Diagnostische RadiologieUniversität Leipzig
  5. 5.Klinik für NuklearmedizinUniversität Leipzig
  6. 6.Klinik für NeurochirurgieUniversität LeipzigLeipzig

Personalised recommendations