Der Radiologe

, Volume 43, Issue 7, pp 537–542 | Cite as

MR-Volumetrie zur Darstellung von Verteilung und zeitlicher Abfolge neokortikaler Degeneration bei Morbus Alzheimer

  • G. Leinsinger
  • S. Teipel
  • A. Wismüller
  • C. Born
  • T. Meindl
  • W. Flatz
  • S. Schönberg
  • J. Pruessner
  • H. Hampel
  • M. Reiser
Demenzerkrankungen

Zusammenfassung

Fragestellung

Volumetrische Analyse des Corpus callosum und Hippokampus mittels MRT bei der Alzheimer-Erkrankung (AD), mit dem Ziel die regionale Verteilung und Progression der neokortikalen relativ zur allokortikalen Neurodegeneration zu erfassen.

Methodik

In mehreren Studienabschnitten wurden Patienten mit AD und gesunde Kontrollen untersucht. Als Grundlage für die Volumetrie diente eine sagittale 3D-T1w–Gradientenechosequenz. Die Vermessung des Corpus callosum (CC) erfolgte in der mittsagittalen Schicht, wobei 5 Subregionen definiert wurden. Die Volumetrie des Hippokampus-Amygdala-Komplexes (HAK) wurde durch Segmentierung an koronar reorientierten Schichten durchgeführt.

Ergebnisse

Bei Patienten mit AD fand sich eine signifikante Atrophie in Rostrum und Splenium des CC. Dabei zeigte sich eine Korrelation der Atrophie mit dem Schweregrad der Demenz, jedoch nicht mit dem Ausmaß von Marklagerläsionen. Im Vergleich mit der 18FDG-PET fand sich eine signifikante Korrelation zwischen dem Muster der CC-Atrophie und dem regionalen Glukosemetabolismus. Eine ROC-Analyse zeigte sogar in frühen Stadien der Erkrankung keinen signifikanten Unterschied für die diagnostische Genauigkeit der Volumina von HAK und Region C5 (Splenium) des CC.

Schlussfolgerungen

Die regionale Atrophie des CC kann bereits in frühen Demenzstadien zur Beurteilung von Ausmaß und Verteilung einer neokortikalen Neurodegeneration eingesetzt werden.

Schlüsselwörter

Morbus Alzheimer Hippokampus Corpus callosum Neokortex MRT 

Abstract

Purpose

Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration.

Methods

In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices.

Results

In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with 18FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia.

Conclusion

Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD.

Keywords

Alzheimer's disease Hippocampus Corpus callosum Neocortex MRI 

Literatur

  1. 1.
    DeCarli C (2001) The role of neuroimaging in dementia. Clin Geriatr Med 17/2: 255–279Google Scholar
  2. 2.
    Jack CR, Petersen RC, Xu YC et al. (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52: 1397–1403PubMedGoogle Scholar
  3. 3.
    Krasuski RJ, Alexander GE, Horwitz B et al. (1998) Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry 43: 60–68CrossRefPubMedGoogle Scholar
  4. 4.
    Pearlson GD, Harris GJ, Powers RE et al. (1992) Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer's disease. Arch Gen Psychiatry 49: 402–408PubMedGoogle Scholar
  5. 5.
    Seab JP, Jagust WJ, Wong STS et al. (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer's disease. Magn Reson Med 8: 200–208PubMedGoogle Scholar
  6. 6.
    Killiany RJ, Hyman BT, Gomez-Isla T et al. (2002) MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188–1196PubMedGoogle Scholar
  7. 7.
    De Toledo-Morrell L, Goncharova I, Dickerson B, Wilson RS, Bennett DA (2000) From healthy aging to early Alzheimer's disease: in vivo detection of entorhinal cortex atrophy. Ann NY Acad Sci 911: 240–253PubMedGoogle Scholar
  8. 8.
    Xu Y, Jack CR, O'Brian PC et al. (2000) Usefulness of MRI measures of entorhinal cortex vs. hippocampus in AD. Neurology 54: 1760–1767PubMedGoogle Scholar
  9. 9.
    Yamauchi H, Fukuyama H, Nagahama Y et al. (2000) Comparison of the pattern of atrophy of the corpus callosum in frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's disease. J Neurol Neurosurg Psychiatry 69 : 623–629Google Scholar
  10. 10.
    Pantel J, Schröder J, Essig M et al. (1998) Corpus callosum in Alzheimer's disease and vascular dementia –a quantitative magnetic resonance study. J Neural Transm 54 (Suppl): 129–136Google Scholar
  11. 11.
    Janowsky JS, Kaye JA, Carper RA (1996) Atrophy of the corpus callosum in Alzheimer's disease vs. healthy aging. J Am Geriatr Soc 44: 798–803PubMedGoogle Scholar
  12. 12.
    Hanyu H, Asano T, Sakurai H et al. (2002) MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia. Am J Neuroradiol 23/1: 27–32Google Scholar
  13. 13.
    Murphy DGM, DeCarli CD, Daly E et al. (1993) Volumetric magnetic resonance imaging in men with dementia of the Alzheimer type: correlations with disease severity. Biol Psychiatry 34: 612–621CrossRefPubMedGoogle Scholar
  14. 14.
    Tanna NK, Kohn MI, Horwich DN et al. (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging: impact on PET Data correction. Radiology 178: 123–130PubMedGoogle Scholar
  15. 15.
    Baron JC, Chetelat G, Desgranges B et al. (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14/2: 298–309Google Scholar
  16. 16.
    Fox NC, Crum WR, Scahill RI et al. (2001) Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358/9277: 201–205Google Scholar
  17. 17.
    Thompson PM, Mega MS, Woods RP et al. (2001) Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11: 1–16PubMedGoogle Scholar
  18. 18.
    Hampel H, Teipel SJ, Alexander GE et al. (1998) Corpus callosum atrophy is a possible indicator for region and cell type specific neuronal degeneration in Alzheimer disease: An MRI analysis. Arch Neurol 55: 193–198CrossRefPubMedGoogle Scholar
  19. 19.
    Hampel H, Teipel SJ, Alexander GE et al. (2002) In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer's disease. J Neural Transm 109: 837–855CrossRefPubMedGoogle Scholar
  20. 20.
    Pruessner JC, Koehler S, Crane J et al. (2002) Volumetry of temporopolar, perirhinal, entorhinal, and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus. Cerebral Cortex 12: 1342–1353CrossRefPubMedGoogle Scholar
  21. 21.
    Teipel SJ, Bayer W, Alexander GE et al. (2002) Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol 59: 243–248CrossRefPubMedGoogle Scholar
  22. 22.
    Teipel SJ, Bayer W, Alexander GE et al. (2003) Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer's disease in relation to dementia severity: evidence for early neocortical degeneration. Neurobiol Aging 24: 85–94CrossRefPubMedGoogle Scholar
  23. 23.
    Bokde AL, Teipel SJ, Zebuhr Y et al. (2002) A new rapid landmark-based regional MRI segmentation method of the brain. J Neurol Sci 194: 35–40CrossRefPubMedGoogle Scholar
  24. 24.
    Scheltens P, Barkhof F, Leys D et al. (1993) A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114: 7–12CrossRefPubMedGoogle Scholar
  25. 25.
    Teipel SJ, Hampel H, Alexander GE et al. (1998) Dissociation between white matter pathology and corpus callosum atrophy in Alzheimer's disease. Neurology 51: 1381–1385.PubMedGoogle Scholar
  26. 26.
    Hampel H, Teipel SJ, Alexander GE et al. (2000) Corpus callosum measurement is an in vivo indicator for neocortical neuronal integrity, but not white matter pathology, in Alzheimer's disease. Ann NY Acad Sci 903: 470–477PubMedGoogle Scholar
  27. 27.
    Teipel SJ, Hampel H, Pietrini P et al. (1999) Region specific corpus callosum atrophy correlates with regional pattern of cortical glucose metabolism in Alzheimer's disease. Arch Neurol 56: 467–473CrossRefPubMedGoogle Scholar
  28. 28.
    Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristics curves derived from the same cases. Radiology 148: 839–843PubMedGoogle Scholar
  29. 29.
    Pogarell O, Teipel SJ, Juckel G et al. (2003) Decline of interhemispheric EEG coherence reflects regional corpus callosum atrophy in patients with Alzheimer's disease. (submitted)Google Scholar
  30. 30.
    Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer's disease. Alzheimer's Res 3: 235–247Google Scholar
  31. 31.
    Duara R, Grady C, Haxby J et al. (1986) Positron emission tomography in Alzheimer's disease. Neurology 36: 879–887PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • G. Leinsinger
    • 1
    • 3
  • S. Teipel
    • 2
  • A. Wismüller
    • 1
  • C. Born
    • 1
  • T. Meindl
    • 1
  • W. Flatz
    • 1
  • S. Schönberg
    • 1
  • J. Pruessner
    • 2
  • H. Hampel
    • 2
  • M. Reiser
    • 1
  1. 1.Institut für Klinische RadiologieKlinikum der Ludwig-Maximilians-Universität MünchenMünchen
  2. 2.Klinik für PsychiatrieLudwig-Maximilians-Universität MünchenMünchen
  3. 3.Institut für Klinische RadiologieLMU MünchenMünchen

Personalised recommendations